SUMMARYThe aim of this study was to determine if the distribution in vivo of CD4 1 CD45RA 1 /CD45RO 2 (naive), CD4 1 CD45RA 1 /CD45RO 1 (Ddull) and CD4 1 CD45RO 1 (memory) lymphocytes differs in malnourished infected and well-nourished infected children. The expression of CD45RA (naive) and CD45RO (memory) antigens on CD4 1 lymphocytes was analysed by flow cytometry in a prospectively followed cohort of 15 malnourished infected, 12 well-nourished infected and 10 well-nourished uninfected children. Malnourished infected children showed higher fractions of Ddull cells (11´4^0´7%) and lower fractions of memory cells (20´3^1´7%) than the well-nourished infected group (8´8^0´8 and 28´1^1´8%, respectively). Well-nourished infected children showed increased percentages of memory cells, an expected response to infection. Impairment of the transition switch to the CD45 isoforms in malnourished children may explain these findings, and may be one of the mechanisms involved in immunodeficiency in these children.
Perfluorooctanoic acid (PFOA) is a member of the perfluoroalkyl acid family of compounds. Due to the presence of strong carbon-fluorine bonds, it is practically nonbiodegradable and highly persistent in the environment. PFOA has been detected in the follicular fluid of women, and positively associated with reduced fecundability and infertility. However, there are no reports concerning the experimental evaluation of PFOA on oocyte toxicity in mammals. The aim of the present study was to determine if PFOA is able to induce oxidative stress in fetal ovaries and cause apoptosis in oocytes in vitro. In addition, since inhibition of the gap junction intercellular communication (GJIC) by PFOA has been demonstrated in liver cells in vivo and in vitro, the effect of PFOA on the GJIC between the oocyte and its supportive cumulus cells was studied.Results show that PFOA induced oocyte apoptosis and necrosis in vitro (medium lethal concentration, LC 50 = 112.8 μM), as evaluated with Annexin-V-Alexa 508 in combination with BOBO-1 staining. Reactive oxygen species (ROS) levels, as assessed by DCFH-DA, increased significantly in fetal ovaries exposed to ¼ LC 50 (28.2 μM, a noncytotoxic and relevant occupational exposure concentration) and LC 50 PFOA ex vivo. This perfluorinated compound also caused the blockage of GJIC in cumulus cells-oocyte complexes (COCs) obtained from female mice exposed in vivo, as evaluated by calcein transfer from cumulus cells to the oocyte. The ability of PFOA of disrupting the GJIC in COCs, generating ROS in the fetal ovary and causing apoptosis and necrosis in mammal's oocytes, might account for the reported association between increasing maternal plasma concentrations of PFOA with reduced fertility in women.
Diazinon and malathion are commonly used organophosphate insecticides in agriculture, industry, and in veterinary medicine as an ectoparasiticide. The importance to carry out in vitro reproductive toxicology assays lies on the need of knowing the alterations these insecticides may cause at cellular level, since they are endocrine disruptors that interfere with reproductive functions. The aim of this study was to evaluate in vitro oocyte viability, fertilization, and embryo development with different concentrations of diazinon and malathion. For in vitro fertilization (IVF), porcine oocytes and sperm were co-incubated for 7 h with increasing concentrations (50, 100, and 500 microM) of diazinon and malathion. For embryo development, fertilized oocytes were cultured in medium containing the same insecticide concentrations during 96 h for embryo development and 144 h for morulae formation. Diazinon did not affect oocyte viability and embryo divisions but decreased IVF (fertilization inhibition(50) = 502 microM) and morulae formation (morulae inhibition(50) = 344 microM). Malathion affected all the studied parameters: lethal concentration(50) = 1 mM, fertilization inhibition(50) = 443 microM, development inhibition(50) = 375 microM, and morulae inhibition(50) = 216 microM. The results of this study indicate that diazinon and malathion used in commercial formulation could be toxic, producing impairment in in vitro fertilization and embryo development. This is an approach for further investigations to find out cell damage mechanisms produced by these widely used insecticides.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.