The acidity of Al-SBA-15 materials functionalized by ball milling with several niobium loadings (0. 25-1 wt.%) as well as with several fluorine loadings (by wet impregnation using NH 4 F as a precursor) was characterized and materials investigated in the esterification of valeric acid to alkyl valerates. The parent Al-SBA-15 support as well as the modified materials loaded with Nb and/or F have been catalysts synthesized characterized by X-ray diffraction (XRD), N 2 physisorption measurements, and diffuse reflection infrared spectroscopy (DRIFT) among others. A special interest was paid on the acidity of the materials that was investigated by temperature-programmed desorption of pyridine. Interestingly, the characterization results for the materials containing fluorine showed up an increase in the acidity strength despite of a reduction in the number of acid sites. The catalytic performance of the as-prepared catalysts was investigated in the microwave-assisted esterification reaction of valeric acid to valerate esters. Thus, while the materials modified with niobium exhibited a lower catalytic activity as compared with the catalytic support (Al-SBA-15), the materials loaded with fluorine either onto Al-SBA-15 or on Nb1%/Al-SBA-15 materials presented enhanced conversion values of valeric acid. Therefore, it can be said that the new acid sites with enhanced strength formed by the incorporation of fluorine boost the esterification of valeric acid with alcohols to form the respective valerate ester.
Al-SBA-15 materials were functionalized by ball milling with several niobium loadings (0.25–1 wt.%) and/or with several F- loadings, using NH4F as a precursor. The catalysts synthesized in this study were characterised by X-ray diffraction (XRD), N2 porosimetry, and diffuse reflection infrared spectroscopy (DRIFT) among others. The prepared materials shown, form moderate to high catalytic activities in the microwave-assisted transformation of valeric acid to ethyl valerate via esterification. The incorporation of fluoride anions either into Al-SBA-15 or on Nb1%/Al-SBA-15 led to a linear increase in valeric acid conversion with the F− content. Thus, F− modified mesoporous aluminosilicates efficiently catalyze the transformation of valeric acid into alkyl valerate esters as renewable fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.