Penalty functions can be used to add constraints to systems of equations. In computational mechanics, stiffness-type penalties are the common choice. However, in dynamic applications stiffness penalties have the disadvantage that they tend to decrease the critical time step in conditionally stable time integration schemes, leading to increased CPU times for simulations. In contrast, inertia penalties increase the critical time step. In this paper, we suggest the simultaneous use of stiffness penalties and inertia penalties, which is denoted as the bipenalty method. We demonstrate that the accuracy of the bipenalty method is at least as good as (and usually better than) using either stiffness penalties or inertia penalties. Furthermore, for a number of finite elements (bar elements, beam elements and square plane stress/plane strain elements) we have derived ratios of the two penalty parameters such that their combined effect on the critical time step is neutral. The bipenalty method is thus superior to using stiffness penalties, because the decrease in critical time step can be avoided. The bipenalty method is also superior to using inertia penalties, since the constraints are realized with higher accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.