Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms) of all extant multicellular European terrestrial and freshwater animals and their geographical distribution at the level of countries and major islands (east of the Urals and excluding the Caucasus region). The Fauna Europaea project comprises about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. Fauna Europaea represents a huge effort by more than 400 contributing taxonomic specialists throughout Europe and is a unique (standard) reference suitable for many user communities in science, government, industry, nature conservation and education. The Diptera–Brachycera is one of the 58 Fauna Europaea major taxonomic groups, and data have been compiled by a network of 55 specialists.Within the two-winged insects (Diptera), the Brachycera constitute a monophyletic group, which is generally given rank of suborder. The Brachycera may be classified into the probably paraphyletic 'lower brachyceran grade' and the monophyletic Eremoneura. The latter contains the Empidoidea, the Apystomyioidea with a single Nearctic species, and the Cyclorrhapha, which in turn is divided into the paraphyletic 'aschizan grade' and the monophyletic Schizophora. The latter is traditionally divided into the paraphyletic 'acalyptrate grade' and the monophyletic Calyptratae. Our knowledge of the European fauna of Diptera–Brachycera varies tremendously among families, from the reasonably well known hoverflies (Syrphidae) to the extremely poorly known scuttle flies (Phoridae). There has been a steady growth in our knowledge of European Diptera for the last two centuries, with no apparent slow down, but there is a shift towards a larger fraction of the new species being found among the families of the nematoceran grade (lower Diptera), which due to a larger number of small-sized species may be considered as taxonomically more challenging.Most of Europe is highly industrialised and has a high human population density, and the more fertile habitats are extensively cultivated. This has undoubtedly increased the extinction risk for numerous species of brachyceran flies, yet with the recent re-discovery of Thyreophora cynophila (Panzer), there are no known cases of extinction at a European level. However, few national Red Lists have extensive information on Diptera.For the Diptera–Brachycera, data from 96 families containing 11,751 species are included in this paper.
Arthropods at different stages of development collected from human remains in an advanced stage of decomposition (following autopsy) and from the soil at the scene are reported. The corpse was found in a mixed deciduous forest of Biscay (northern Spain). Soil fauna was extracted by sieving the soil where the corpse lay and placing the remains in Berlese-Tullgren funnels. Necrophagous fauna on the human remains was dominated by the fly Piophilidae: Stearibia nigriceps (Meigen, 1826), mites Ascidae: Proctolaelaps epuraeae (Hirschmann, 1963), Laelapidae: Hypoaspis (Gaeolaelaps) aculeifer (Canestrini, 1884), and the beetle Cleridae: Necrobia rufipes (de Geer, 1775). We confirm the importance of edaphic fauna, especially if the deceased is discovered in natural environs. Related fauna may remain for days after corpse removal and reveal information related to the circumstances of death. The species Nitidulidae: Omosita depressa (Linnaeus, 1758), Acaridae: Sancassania berlesei (Michael, 1903), Ascidae: Zerconopsis remiger (Kramer, 1876) and P. epuraeae, Urodinychidae: Uroobovella pulchella (Berlese, 1904), and Macrochelidae: Glyptholaspis americana (Berlese, 1888) were recorded for the first time in the Iberian Peninsula.
Abstract. Seasonal cycles constitute a major challenge for organisms since they may influence the genetic composition of a population, the species structure of a community and the interactions between organisms. Diapause is frequently used by insects to synchronize their life cycle with seasonal changes and is regarded as a key factor in the coexistence of competing species. Here the occurrence, abundance and emergence patterns of three poorly-known species of carnid flies (Carnus hemapterus Nitzsch, 1818, Hemeromyia anthracina Collin, 1949 and Hemeromyia longirostris Carles-Tolrá, 1992), which overwintered in the nests of several bird species at two localities, are reported and evidence of possible interspecific competition sought. Larvae of all three species were found in association with carrion and detritus. Both Hemeromyia species co-occurred in around 50% of the nests and Carnus with each of the Hemeromyia species at a lower rate (30-40% of the nests). Coexistence of all three carnid species was rare. We did not find any evidence of interspecific competition in the larval stage. Coexistence did not reduce the number of flies that emerged of any of the three species and the abundance of some species was even positively related. Species-specific emergence patterns and different habitat selection criteria (Carnus hemapterus seemed to avoid nests lined with vegetable material), which diminished the overlap between species were found. Such spatial and temporal segregation could facilitate the coexistence of these closely related species, which have similar ecological requirements, and might influence the seasonal dynamics of this poorly-known assemblage of insects inhabiting the nests of birds.
Parasitoid wasps may act as hyperparasites and sometimes regulate the populations of their hosts by a top-down dynamic. Nasonia vitripennis (Walker, 1836) is a generalist gregarious parasitoid that parasitizes several host flies, including the blowfly Protocalliphora Hough, (Diptera: Calliphoridae), which in turn parasitizes bird nestlings. Nonetheless, the ecological factors underlying N. vitripennis prevalence and parasitoidism intensity on its hosts in natural populations are poorly understood. We have studied the prevalence of N. vitripennis in Protocalliphora azurea (Fallén, 1817) puparia parasitizing wild populations of pied flycatcher (Ficedula hypoleuca) and blue tit (Cyanistes caeruleus) birds in two Mediterranean areas in central and southern Spain.We found some evidence that the prevalence of N. vitripennis was higher in moist habitats in southern Spain. A host-dependent effect was found, since the greater the number of P. azurea puparia, the greater the probability and rate of parasitoidism by the wasp. Our results also suggest that N. vitripennis parasitizes more P. azurea puparia in blue tit nests than in pied flycatcher nests as a consequence of a higher load of these flies in the former. Based on the high prevalence of N. vitripennis in P. azurea puparia in nature, we propose that this wasp may regulate blowfly populations, with possible positive effects on the reproduction of both bird species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.