In a real-time scenario, NBI demonstrates a high concordance with gastric histology, superior to WLE. Diagnostic accuracy higher than 90 % suggests that routine use of NBI allows targeted instead of random biopsy samples. EGGIM also permits immediate grading of intestinal metaplasia without biopsies and merits further investigation.
Cardiac auscultation is one of the most costeffective techniques used to detect and identify many heart conditions. Computer-assisted decision systems based on auscultation can support physicians in their decisions. Unfortunately, the application of such systems in clinical trials is still minimal since most of them only aim to detect the presence of extra or abnormal waves in the phonocardiogram signal, i.e., only a binary ground truth variable (normal vs abnormal) is provided. This is mainly due to the lack of large publicly available datasets, where a more detailed description of such abnormal waves (e.g., cardiac murmurs) exists.To pave the way to more effective research on healthcare recommendation systems based on auscultation, our team has prepared the currently largest pediatric heart sound dataset. A total of 5282 recordings have been collected from the four main auscultation locations of 1568 patients, in the process, 215780 heart sounds have been manually annotated. Furthermore, and for the first time, each cardiac murmur has been manually annotated by an expert annotator according to its timing, shape, pitch, grading, and quality. In addition, the auscultation locations where the murmur is present were identified as well as the auscultation location where the murmur is detected more intensively. Such detailed description for a relatively large number of heart sounds may pave the way for new machine learning algorithms with a real-world application for the detection and analysis of murmur waves for diagnostic purposes.
In this paper, we propose a new approach for heartbeat classification based on a combination of morphological and dynamic features. Wavelet transform and independent component analysis (ICA) are applied separately to each heartbeat to extract morphological features. In addition, RR interval information is computed to provide dynamic features. These two different types of features are concatenated and a support vector machine classifier is utilized for the classification of heartbeats into one of 16 classes. The procedure is independently applied to the data from two ECG leads and the two decisions are fused for the final classification decision. The proposed method is validated on the baseline MIT-BIH arrhythmia database and it yields an overall accuracy (i.e., the percentage of heartbeats correctly classified) of 99.3% (99.7% with 2.4% rejection) in the "class-oriented" evaluation and an accuracy of 86.4% in the "subject-oriented" evaluation, comparable to the state-of-the-art results for automatic heartbeat classification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.