This paper describes the complete implementation of a blind image denoising algorithm, that takes any digital image as input. In a first step the algorithm estimates a Signal and Frequency Dependent (SFD) noise model. In a second step, the image is denoised by a multiscale adaptation of the Non-local Bayes denoising method. We focus here on a careful analysis of the denoising step and present a detailed discussion of the influence of its parameters. Extensive commented tests of the blind denoising algorithm are presented, on real JPEG images and on scans of old photographs. Source CodeThe source code (ANSI C), its documentation, and the online demo are accessible at the IPOL web page of this article 1 .
Digital images are matrices of equally spaced pixels, each containing a photon count. This photon count is a stochastic process due to the quantum nature of light. It follows that all images are noisy. Ever since digital images have existed, numerical methods have been proposed to improve the signal-to-noise ratio. Such ‘denoising’ methods require a noise model and an image model. It is relatively easy to obtain a noise model. As will be explained in the present paper, it is even possible to estimate it from a single noisy image.
Arguably several thousands papers are dedicated to image denoising. Most papers assume a fixed noise model, mainly white Gaussian or Poissonian. This assumption is only valid for raw images. Yet, in most images handled by the public and even by scientists, the noise model is imperfectly known or unknown. End users only dispose the result of a complex image processing chain effectuated by uncontrolled hardware and software (and sometimes by chemical means). For such images, recent progress in noise estimation permits to estimate from a single image a noise model, which is simultaneously signal and frequency dependent. We propose here a multiscale denoising algorithm adapted to this broad noise model. This leads to a blind denoising algorithm which we demonstrate on real JPEG images and on scans of old photographs for which the formation model is unknown. The consistency of this algorithm is also verified on simulated distorted images. This algorithm is finally compared with the unique state of the art previous blind denoising method.
The COVID-19 pandemic has undergone frequent and rapid changes in its local and global infection rates, driven by governmental measures or the emergence of new viral variants. The reproduction number Rt indicates the average number of cases generated by an infected person at time t and is a key indicator of the spread of an epidemic. A timely estimation of Rt is a crucial tool to enable governmental organizations to adapt quickly to these changes and assess the consequences of their policies. The EpiEstim method is the most widely accepted method for estimating Rt. But it estimates Rt with a significant temporal delay. Here, we propose a method, EpiInvert, that shows good agreement with EpiEstim, but that provides estimates of Rt several days in advance. We show that Rt can be estimated by inverting the renewal equation linking Rt with the observed incidence curve of new cases, it. Our signal-processing approach to this problem yields both Rt and a restored it corrected for the “weekend effect” by applying a deconvolution and denoising procedure. The implementations of the EpiInvert and EpiEstim methods are fully open source and can be run in real time on every country in the world and every US state.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.