Abstract. The representation of subsurface structures is an essential aspect of a wide variety of geoscientific investigations and applications, ranging from geofluid reservoir studies, over raw material investigations, to geosequestration, as well as many branches of geoscientific research and applications in geological surveys. A wide range of methods exist to generate geological models. However, the powerful methods are behind a paywall in expensive commercial packages. We present here a full open-source geomodeling method, based on an implicit potential-field interpolation approach. The interpolation algorithm is comparable to implementations in commercial packages and capable of constructing complex full 3-D geological models, including fault networks, fault–surface interactions, unconformities and dome structures. This algorithm is implemented in the programming language Python, making use of a highly efficient underlying library for efficient code generation (Theano) that enables a direct execution on GPUs. The functionality can be separated into the core aspects required to generate 3-D geological models and additional assets for advanced scientific investigations. These assets provide the full power behind our approach, as they enable the link to machine-learning and Bayesian inference frameworks and thus a path to stochastic geological modeling and inversions. In addition, we provide methods to analyze model topology and to compute gravity fields on the basis of the geological models and assigned density values. In summary, we provide a basis for open scientific research using geological models, with the aim to foster reproducible research in the field of geomodeling.
Structural geologic models are widely used to represent the spatial distribution of relevant geologic features. Several techniques exist to construct these models on the basis of different assumptions and different types of geologic observations. However, two problems are prevalent when constructing models: (1) observations and assumptions, and therefore also the constructed model, are subject to uncertainties and (2) additional information is often available, but it cannot be considered directly in the geologic modeling stepalthough it could be used to reduce model uncertainties. The first problem has been addressed in recent work. Here we develop a conceptual approach to consider the second aspect: We combine uncertain prior information with geologically motivated likelihood functions in a Bayesian inference framework. The result is that we not only reduce uncertainties in the ensemble of generated models, but we also gain the potential to learn additional features about the model parameters. We develop an implementation of this concept in a probabilistic programming framework, in which we extend the functionality of a 3D implicit potential-field interpolation method with geologic likelihood functions. With schematic examples, we show how this combination leads to suites of models with reduced uncertainties and how it provides a deeper insight into parameter correlations. Furthermore, the integration into a hierarchical Bayesian model provides an insight into potential extensions of the method, for example, the interpolation functional itself, and other types of information, such as gravity or magnetic potential-field data. These aspects constitute promising paths for future research.
The spatial relationship between different rock types and relevant structural features is an important aspect in the characterization of ore-forming systems. Our knowledge about this geological architecture is often captured in 3D structural geological models. Multiple methods exist to generate these models, but one important problem remains: structural models often contain significant uncertainties. In recent years, several approaches have been developed to consider uncertainties in geological prior parameters that are used to create these models through the use of stochastic simulation methods. However, a disadvantage of these methods is that there is no guarantee that each simulated model is geologically reasonable – and that it forms a valid representation in the light of additional data (e.g. geophysical measurements). We address these shortcomings here with an approach for the integration of structural geological and geophysical data into a framework that explicitly considers model uncertainties. We combine existing implicit structural modelling methods with novel developments in probabilistic programming in a Bayesian framework. In an application of these concepts to a gold-bearing greenstone belt in Western Australia, we show that we are able to significantly reduce uncertainties in the final model by additional data integration. Although the final question always remains whether a predicted model suite is a suitable representation of accuracy or not, we conclude that our application of a Bayesian framework provides a novel quantitative approach to addressing uncertainty and optimization of model parameters.
Abstract. Exhumed basement rocks are often dissected by faults, the latter controlling physical parameters such as rock strength, porosity, or permeability. Knowledge on the threedimensional (3-D) geometry of the fault pattern and its continuation with depth is therefore of paramount importance for applied geology projects (e.g. tunnelling, nuclear waste disposal) in crystalline bedrock. The central Aar massif (Central Switzerland) serves as a study area where we investigate the 3-D geometry of the Alpine fault pattern by means of both surface (fieldwork and remote sensing) and underground ground (mapping of the Grimsel Test Site) information. The fault zone pattern consists of planar steep major faults (kilometre scale) interconnected with secondary relay faults (hectometre scale). Starting with surface data, we present a workflow for structural 3-D modelling of the primary faults based on a comparison of three extrapolation approaches based on (a) field data, (b) Delaunay triangulation, and (c) a best-fitting moment of inertia analysis. The quality of these surface-data-based 3-D models is then tested with respect to the fit of the predictions with the underground appearance of faults. All three extrapolation approaches result in a close fit ( > 10 %) when compared with underground rock laboratory mapping. Subsequently, we performed a statistical interpolation based on Bayesian inference in order to validate and further constrain the uncertainty of the extrapolation approaches. This comparison indicates that fieldwork at the surface is key for accurately constraining the geometry of the fault pattern and enabling a proper extrapolation of major faults towards depth. Considerable uncertainties, however, persist with respect to smaller-sized secondary structures because of their limited spatial extensions and unknown reoccurrence intervals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.