Background Digital clinical tools are a new technology that can be used in the screening or diagnosis of obstructive sleep apnea (OSA), notwithstanding the crucial role of polysomnography, the gold standard. Objective This study aimed to identify, gather, and analyze the most accurate digital tools and smartphone-based health platforms used for OSA screening or diagnosis in the adult population. Methods We performed a comprehensive literature search of PubMed, Scopus, and Web of Science databases for studies evaluating the validity of digital tools in OSA screening or diagnosis until November 2022. The risk of bias was assessed using the Joanna Briggs Institute critical appraisal tool for diagnostic test accuracy studies. The sensitivity, specificity, and area under the curve (AUC) were used as discrimination measures. Results We retrieved 1714 articles, 41 (2.39%) of which were included in the study. From these 41 articles, we found 7 (17%) smartphone-based tools, 10 (24%) wearables, 11 (27%) bed or mattress sensors, 5 (12%) nasal airflow devices, and 8 (20%) other sensors that did not fit the previous categories. Only 8 (20%) of the 41 studies performed external validation of the developed tool. Of these, the highest reported values for AUC, sensitivity, and specificity were 0.99, 96%, and 92%, respectively, for a clinical cutoff of apnea-hypopnea index (AHI)≥30. These values correspond to a noncontact audio recorder that records sleep sounds, which are then analyzed by a deep learning technique that automatically detects sleep apnea events, calculates the AHI, and identifies OSA. Looking at the studies that only internally validated their models, the work that reported the highest accuracy measures showed AUC, sensitivity, and specificity values of 1.00, 100%, and 96%, respectively, for a clinical cutoff AHI≥30. It uses the Sonomat—a foam mattress that, aside from recording breath sounds, has pressure sensors that generate voltage when deformed, thus detecting respiratory movements, and uses it to classify OSA events. Conclusions These clinical tools presented promising results with high discrimination measures (best results reached AUC>0.99). However, there is still a need for quality studies comparing the developed tools with the gold standard and validating them in external populations and other environments before they can be used in clinical settings. Trial Registration PROSPERO CRD42023387748; https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=387748
BACKGROUND Clinical digital tools are an up-and-coming new technology that can be used in the screening or diagnosis of obstructive sleep apnea (OSA) patients, notwithstanding the crucial role of polysomnography (PSG) – the gold standard. OBJECTIVE The aim of our study was to identify, gather, and analyze existing digital tools and smartphone-based health platforms that are being used for this disease’s screening or diagnosis in the adult population. METHODS We performed a comprehensive literature search in MEDLINE, Scopus, and Web of Science databases for studies evaluating the validity of digital tools in OSA screening or diagnosis until November 2022. The risk of bias was assessed using JBI Critical Appraisal Tool for Diagnostic Test Accuracy Studies. Sensitivity, specificity, and area under the receiver-operating curve (AUC) were used as discrimination measures. RESULTS We retrieved 1714 articles, 41 of which were included. We found 7 smartphone-based tools, 10 wearables, 11 bed/mattress sensors, 5 nasal airflow devices, and 8 other sensors that did not fit the previous categories. Only 8 (20%) studies performed external validation of their developed tool. Of those, the highest reported values for AUC, sensitivity, and specificity were 0.99, 96%, and 92%, respectively, for a clinical cutoff of apnea-hypopnea index (AHI) ≥ 30 and correspond to a non-contact audio recorder that records sleep sounds, which are then analyzed by a deep learning technique that automatically detects sleep apnea events, calculates the AHI, and identifies OSA. Looking at the studies that only internally validated their models, the work that reported the highest accuracy measures showed AUC, sensitivity, and specificity values of 1.00, 100%, and 96%, respectively, for a clinical cutoff AHI ≥ 30. It uses the Sonomat – a foam mattress that, aside from recording breath sounds, has pressure sensors that generate voltage when deformed, thus detecting respiratory movements, and using it to classify OSA events. CONCLUSIONS These clinical tools presented promising results, showing high discrimination measures (best results reaching AUC > 0.99). However, there is still a need for quality studies, comparing the developed tools with the gold standard and validating them in external populations and other environments before they can be used in a clinical setting. CLINICALTRIAL This systematic review was registered in PROSPERO under reference CRD42023387748.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.