BackgroundSince 2004, the uptake of seasonal influenza vaccines in Latin America and the Caribbean has markedly increased. However, vaccine effectiveness (VE) is not routinely measured in the region. We assessed the feasibility of using routine surveillance data collected by sentinel hospitals to estimate influenza VE during 2012 against laboratory-confirmed influenza hospitalizations in Costa-Rica, El Salvador, Honduras and Panama. We explored the completeness of variables needed for VE estimation.MethodsWe conducted the pilot case–control study at 23 severe acute respiratory infections (SARI) surveillance hospitals. Participant inclusion criteria included children 6 months–11 years and adults ≥60 years targeted for vaccination and hospitalized for SARI during January–December 2012. We abstracted information needed to estimate target group specific VE (i.e., date of illness onset and specimen collection, preexisting medical conditions, 2012 and 2011 vaccination status and date, and pneumococcal vaccination status for children and adults) from SARI case-reports and for children ≤9 years, inquired about the number of annual vaccine doses given. A case was defined as an influenza virus positive by RT-PCR in a person with SARI, while controls were RT-PCR negative. We recruited 3 controls per case from the same age group and month of onset of symptoms.ResultsWe identified 1,186 SARI case-patients (342 influenza cases; 849 influenza-negative controls), of which 994 (84 %) had all the information on key variables sought. In 893 (75 %) SARI case-patients, the vaccination status field was missing in the SARI case-report forms and had to be completed using national vaccination registers (36 %), vaccination cards (30 %), or other sources (34 %). After applying exclusion criteria for VE analyses, 541 (46 %) SARI case-patients with variables necessary for the group-specific VE analyses were selected (87 cases, 236 controls among children; 64 cases, 154 controls among older adults) and were insufficient to provide precise regional estimates (39 % for children and 25 % for adults of minimum sample size needed).ConclusionsSentinel surveillance networks in middle income countries, such as some Latin American and Caribbean countries, could provide a simple and timely platform to estimate regional influenza VE annually provided SARI forms collect all necessary information.Electronic supplementary materialThe online version of this article (doi:10.1186/s12889-015-2001-1) contains supplementary material, which is available to authorized users.
Rotavirus vaccine was introduced in El Salvador in 2006 and is recommended to be given concomitantly with DTP–HepB–Haemophilus influenzae type b (pentavalent) vaccine at ages 2 months (upper age limit 15 weeks) and 4 months (upper age limit 8 months) of age. However, rotavirus vaccination coverage continues to lag behind that of pentavalent vaccine, even in years when national rotavirus vaccine stockouts have not occurred. We analyzed factors associated with receipt of oral rotavirus vaccine among children who received at least 2 doses of pentavalent vaccine in a stratified cluster survey of children aged 24–59 months conducted in El Salvador in 2011. Vaccine doses included were documented on vaccination cards (94.4%) or in health facility records (5.6%). Logistic regression and survival analysis were used to assess factors associated with vaccination status and age at vaccination. Receipt of pentavalent vaccine by age 15 weeks was associated with rotavirus vaccination (OR: 5.1; 95% CI 2.7, 9.4), and receipt of the second pentavalent dose by age 32 weeks was associated with receipt of two rotavirus vaccine doses (OR: 5.0; 95% CI 2.1–12.3). Timely coverage with the first pentavalent vaccine dose was 88.2% in the 2007 cohort and 91.1% in the 2008 cohort (p = 0.04). Children born in 2009, when a four-month national rotavirus vaccine stock-out occurred, had an older median age of receipt of rotavirus vaccine and were less likely to receive rotavirus on the same date as the same dose of pentavalent vaccine than children born in 2007 and 2008. Upper age limit recommendations for rotavirus vaccine administration contributed to suboptimal vaccination coverage. Survey data suggest that late rotavirus vaccination and co-administration with later doses of pentavalent vaccine among children born in 2009 helped increase rotavirus vaccine coverage following shortages.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.