Background. Mesenchymal stromal cells (MSCs) are increasingly used for clinical applications in equine patients. For MSC isolation and expansion, a laboratory step is mandatory, after which the cells are sent back to the attending veterinarian. Preserving the biological properties of MSCs during this transport is paramount. The goal of the study was to compare transport-related parameters (transport container, media, temperature, time, cell concentration) that potentially influence characteristics of culture expanded equine MSCs.Methods. The study was arranged in three parts comparing (I) five different transport containers (cryotube, two types of plastic syringes, glass syringe, CellSeal), (II) seven different transport media, four temperatures (4 °C vs. room temperature; −20 °C vs. −80 °C), four time frames (24 h vs. 48 h; 48 h vs. 72 h), and (III) three MSC concentrations (5 × 106, 10 × 106, 20 × 106 MSC/ml). Cell viability (Trypan Blue exclusion; percent and total number viable cell), proliferation and trilineage differentiation capacity were assessed for each test condition. Further, the recovered volume of the suspension was determined in part I. Each condition was evaluated using samples of six horses (n = 6) and differentiation protocols were performed in duplicates.Results. In part I of the study, no significant differences in any of the parameters were found when comparing transport containers at room temperature. The glass syringe was selected for all subsequent evaluations (highest recoverable volume of cell suspension and cell viability). In part II, media, temperatures, or time frames had also no significant influence on cell viability, likely due to the large number of comparisons and small sample size. Highest cell viability was observed using autologous bone marrow supernatant as transport medium, and “transport” at 4 °C for 24 h (70.6% vs. control group 75.3%); this was not significant. Contrary, viability was unacceptably low (<40%) for all freezing protocols at −20 °C or −80 °C, particularly with bone marrow supernatant or plasma and DMSO. In part III, various cell concentrations also had no significant influence on any of the evaluated parameters. Chondrogenic differentiation showed a trend towards being decreased for all transport conditions, compared to control cells.Discussion. In this study, transport conditions were not found to impact viability, proliferation or ability for trilineage differentiation of MSCs, most likely due to the small sample size and large number of comparisons. The unusual low viability after all freezing protocols is in contrast to previous equine studies. Potential causes are differences in the freezing, but also in thawing method. Also, the selected container (glass syringe) may have impacted viability. Future research may be warranted into the possibly negative effect of transport on chondrogenic differentiation.
ResumenEl objetivo de este trabajo fue evaluar el efecto de las fibras naturales obtenidas de residuos agroindustriales en la densidad, el gramaje y las propiedades mecánicas de las espumas termoprensadas elaboradas de almidón de especies nativas, como lo son el camote, la oca y la arracacha. El proceso de termoformado se llevó a cabo a una temperatura de 145 °C y una presión de 60 bar. El tiempo de horneado fue de 10-15 min dependiendo del contenido de agua en la mezcla. Las bandejas fueron caracterizadas por su densidad, gramaje, ensayo de impacto, ensayos de deflexión, colorimetría y sus valores de dureza y fracturabilidad. Las bandejas elaboradas por termopresión a base de almidón de camote-fibra de bagazo de caña de azúcar al 15%, y de almidón de arracacha-fibra peladilla de espárrago al 30% presentaron mayores valores en resistencia a la flexión frente a las elaboradas con otros tipos de almidones y fibras, incluyendo a pruebas en blanco. De manera general, la dureza de las bandejas se ve favorecida con el incremento de fibra, sin embargo, la fracturabilidad decrece o no mejora la integridad de la matriz polimérica. Los resultados mostrados en esta investigación permitirán la elaboración de bandejas biodegradables para distintas aplicaciones industriales.Palabras clave: biodegradable; espumas termoprensadas; almidón de camote, oca y arracacha; fibra de bagazo y peladilla; propiedades mecánicas. AbstractThe aim of this study was to evaluate the effect of natural fibers derived from agro-industrial waste in density, weight and mechanical properties of the termoprensadas foams made of starch native species, such as sweet potatoes, oca and arracacha. The thermoforming process was carried out at a temperature of 145 ° C and a pressure of 60 bar. The baking time was 10-15 min depending on water content in the mixture. The trays were characterized by their density, weight, impact test, deflection tests, colorimetry, hardness, and fracturability values. The trays prepared by thermopressure based on sweet potato starch-bagasse fiber from sugar cane at 15%, and arracacha starch -peladilla asparagus fiber at 30% had higher values in flexural strength versus those made with other types of starches and fibers, including blank tests. Generally, the hardness of the trays is favored with increasing fiber, however fracturability decreases or does not improve the integrity of the polymeric matrix. The results shown in this study allow the preparation of biodegradable trays for various industrial applications.
Efecto combinado de filtración por placas y centrifugación en la absorbancia aplicado a la clarificación de chicha de jora Effect combined of filtration plates and centrifugation in absorbance applied to the clarification of "Chicha de Jora"
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.