The determination of optical properties of organic matter using spectroscopic techniques is a powerful tool for the characterization of humic substances (HS) in soils and sediments because of sensitivity, specificity and sample throughput. However, basic spectroscopic techniques have practical limitations because of the similarity in the optical properties of many HS. To improve resolution, the combination of excitation-emission matrix (EEM) fluorescence and parallel factor analysis (PARAFAC) was applied for characterizing fulvic acid (FA) and humic acid (HA) fractions from soils and sediments of two estuarine environments in Spain. Five fluorescent components were identified by EEM-PARA-FAC and were found in both FA and HA fractions, consistent with the new paradigm of HS as supramolecular associations as well as the ubiquity of the HS components in the environment. Their contribution was, however, different between the FA and HA fractions. Two different, humic-like, fluorescent components were representative of FA and HA fractions, respectively. The spectral characteristics of these components were similar to previously reported PARAFAC components in dissolved organic matter (DOM) in a wide range of environments, suggesting their applicability in assessing OM quality and environmental dynamics. A microbial humic-like component was much more abundant in FA than in HA fractions. Furthermore, principal component analysis clarified that the two identified protein-like components, were enriched in sediment HA compared to soil HA, suggesting a larger contribution of refractory algaenan in sediment HA. The results of the present study demonstrate that EEM-PARAFAC is a useful technique for the biogeochemical characterization of soil and sedimentary HS.
A series of reduced graphene oxide-TiO2 composites (rGO-TiO2) were prepared by hydrothermal treatment using graphite and titanium isopropoxide as raw materials. The structural, surface, electronic, and optical properties of the prepared composites were extensively characterized by N2 adsorption, FTIR, XRD, XPS, Raman spectroscopy, and DRS. GO was found to be effectively reduced and TiO2 to be in pure anatase phase in all composites obtained. Finally, experiments were performed to evaluate the effectiveness of these new materials as photocatalysts in the degradation of ethylparaben (EtP) by UV radiation. According to the band-gap energies obtained (ranging between 3.09 eV for 4% rGO-TiO2 to 2.55 eV for 30% rGO-TiO2), the rGO-TiO2 composites behave as semiconductor materials. The photocatalytic activity is highest with a rGO content of 7 wt% (7% rGO-TiO2), being higher than observed for pure TiO2 (Eg = 3.20 eV) and achieving 98.6% EtP degradation after only 40 min of treatment. However, the degradation yield decreases with higher percentages of rGO. Comparison with rGO-P25 composites showed that a better photocatalytic performance in EtP degradation is obtained with synthesized TiO2 (rGO-TiO2), probably due to the presence of the rutile phase (14.1 wt %) in commercial P25.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.