Large‐scale monitoring of seasonal animal movement is integral to science, conservation and outreach. However, gathering representative movement data across entire species ranges is frequently intractable. Citizen science databases collect millions of animal observations throughout the year, but it is challenging to infer individual movement behaviour solely from observational data. We present BirdFlow, a probabilistic modelling framework that draws on citizen science data from the eBird database to model the population flows of migratory birds. We apply the model to 11 species of North American birds, using GPS and satellite tracking data to tune and evaluate model performance. We show that BirdFlow models can accurately infer individual seasonal movement behaviour directly from eBird relative abundance estimates. Supplementing the model with a sample of tracking data from wild birds improves performance. Researchers can extract a number of behavioural inferences from model results, including migration routes, timing, connectivity and forecasts. The BirdFlow framework has the potential to advance migration ecology research, boost insights gained from direct tracking studies and serve a number of applied functions in conservation, disease surveillance, aviation and public outreach.
1. Large-scale monitoring of seasonal animal movement is integral to science, conservation, and outreach. However, gathering representative movement data across entire species ranges is frequently intractable. Citizen science databases collect millions of animal observations through- out the year, but it is challenging to infer individual movement behavior solely from observational data. 2. We present BirdFlow, a probabilistic modeling framework that draws on citizen science data from the eBird database to model the population flows of migratory birds. 3. We apply the model to 11 species of North American birds, using GPS and satellite tracking data to tune and evaluate model performance. We show that BirdFlow models can accurately infer individual seasonal movement behavior directly from eBird relative abundance estimates. Supplementing the model with a sample of tracking data from wild birds improves performance. 4. Researchers can extract a number of behavioral inferences from model results, including migration routes, timing, connectivty, and forecasts. The BirdFlow framework has the potential to advance migration ecology research, boost insights gained from direct tracking studies, and serve a number of applied functions in conservation, disease surveillance, aviation, and public outreach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.