Exosomes are a subclass of extracellular vesicles involved in intercellular communication that are released by all cell types, including cancer cells. Cancer exosomes carry malignant information in the form of proteins, lipids, and nucleic acids that can reprogram recipient cells. Exosomes have emerged as putative biological mediators in cancer contributing to major steps of disease progression. A leading role exists for cancer exosomes in specific aspects of tumor progression: modulation of immune response, tumor microenvironment reprogramming, and metastasis. This review will address the functions attributed to cancer exosomes in these three aspects of cancer biology, highlighting recent advances and potential limitations. Finally, we explore alternative strategies to develop better models to study cancer exosomes biology. .
Exosomes are lipid bilayer extracellular vesicles (EVs) of 50-150nm in size, which contain nucleic acids (mRNA, ncRNAs and DNA), proteins and lipids. They are secreted by all cells and circulate in all body fluids. Exosomes are key mediators of several processes in cancer that mediate tumor progression and metastasis. These nano-vesicles, when secreted from cancer cells, are enriched in non-coding RNAs (e.g. microRNAs) complexed with the RNA-Induced Silencing Complex (RISC), that mediate an efficient and rapid silencing of mRNAs at the recipient cell, reprogramming their transcriptome. MicroRNAs in circulation encapsulated in exosomes are protected from degradation by a lipid bilayer and might serve as potential non-invasive diagnostic and screening tools to detect early stage cancer, to facilitate treatment options and possible help in curative surgical therapy decisions. Additionally, engineered exosomes can be used as therapy vehicles for targeted delivery of RNAi molecules, escaping the immune system detection.
Colorectal cancer (CRC) is a complex condition with heterogeneous aetiology, caused by a combination of various environmental, genetic, and epigenetic factors. The presence of a homeostatic gut microbiota is critical to maintaining host homeostasis and determines the delicate boundary between health and disease. The gut microbiota has been identified as a key environmental player in the pathogenesis of CRC. Perturbations of the gut microbiota structure (loss of equilibrium and homeostasis) are associated with several intestinal diseases including cancer. Such dysbiosis encompasses the loss of beneficial microorganisms, outgrowth of pathogens and pathobionts and a general loss of local microbiota diversity and richness. Notably, several mechanisms have recently been identified how bacteria induce cellular transformation and promote tumour progression. In particular, the formation of biofilms, the production of toxic metabolites or the secretion of genotoxins that lead to DNA damage in intestinal epithelial cells are newly discovered processes by which the microbiota can initiate tumour formation. The gut microbiota has also been implicated in the metabolism of therapeutic drugs (conventional chemotherapy) as well as in the modulation of radiotherapy responses and targeted immunotherapy. These new findings suggest that the efficacy of a given therapy depends on the composition of the host’s gut microbiota and may therefore vary from patient to patient. In this review we discuss the role of host-microbiota interactions in cancer with a focus on CRC pathogenesis. Additionally, we show how gut bacteria can be exploited in current therapies and how mechanisms directed by microbiota, such as immune cell boost, probiotics and oncolytic bacteria, can be applied in the development of novel therapies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.