Long-COVID is a new emerging syndrome worldwide that is characterized by the persistence of unresolved signs and symptoms of COVID-19 more than 4 weeks after the infection and even after more than 12 weeks. The underlying mechanisms for Long-COVID are still undefined, but a sustained inflammatory response caused by the persistence of SARS-CoV-2 in organ and tissue sanctuaries or resemblance with an autoimmune disease are within the most considered hypotheses. In this study, we analyzed the usefulness of several demographic, clinical, and immunological parameters as diagnostic biomarkers of Long-COVID in one cohort of Spanish individuals who presented signs and symptoms of this syndrome after 49 weeks post-infection, in comparison with individuals who recovered completely in the first 12 weeks after the infection. We determined that individuals with Long-COVID showed significantly increased levels of functional memory cells with high antiviral cytotoxic activity such as CD8+ TEMRA cells, CD8±TCRγδ+ cells, and NK cells with CD56+CD57+NKG2C+ phenotype. The persistence of these long-lasting cytotoxic populations was supported by enhanced levels of CD4+ Tregs and the expression of the exhaustion marker PD-1 on the surface of CD3+ T lymphocytes. With the use of these immune parameters and significant clinical features such as lethargy, pleuritic chest pain, and dermatological injuries, as well as demographic factors such as female gender and O+ blood type, a Random Forest algorithm predicted the assignment of the participants in the Long-COVID group with 100% accuracy. The definition of the most accurate diagnostic biomarkers could be helpful to detect the development of Long-COVID and to improve the clinical management of these patients.
BCR-ABL is an aberrant tyrosine kinase responsible for chronic myeloid leukemia (CML). Tyrosine kinase inhibitors (TKIs) induce a potent antileukemic response mostly based on the inhibition of BCR-ABL, but they also increase the activity of Natural Killer (NK) and CD8+ T cells. After several years, patients may interrupt treatment due to sustained, deep molecular response. By unknown reasons, half of the patients relapse during treatment interruption, whereas others maintain a potent control of the residual leukemic cells for several years. In this study, several immunological parameters related to sustained antileukemic control were analyzed. According to our results, the features more related to poor antileukemic control were as follows: low levels of cytotoxic cells such as NK, (Natural Killer T) NKT and CD8±TCRγβ+ T cells; low expression of activating receptors on the surface of NK and NKT cells; impaired synthesis of proinflammatory cytokines or proteases from NK cells; and HLA-E*0103 homozygosis and KIR haplotype BX. A Random Forest algorithm predicted 90% of the accuracy for the classification of CML patients in groups of relapse or non-relapse according to these parameters. Consequently, these features may be useful as biomarkers predictive of CML relapse in patients that are candidates to initiate treatment discontinuation.
Chromodomain-helicase-DNA-binding protein 4 (CHD4) is an epigenetic regulator identified as an oncogenic element that may provide a novel therapeutic target for the treatment of breast cancer (BC). CHD4—the core component of the nucleosome remodeling and deacetylase (NuRD) complex—may be mutated in patients with this disease. However, information on CHD4 mutants that might allow their use as biomarkers of therapeutic success and prognosis is lacking. The present work examines mutations in CHD4 reported in patients with breast cancer and included in public databases and attempts to identify their roles in its development. The databases revealed 81 point mutations across different types of breast cancer (19 of which also appeared in endometrial, intestinal, nervous system, kidney, and lymphoid organ cancers). 71.6% of the detected mutations were missense mutations, 13.6% were silent, and 6.2% nonsense. Over 50% affected conserved residues of the ATPase motor (ATPase and helicase domains), and domains of unknown function in the C-terminal region. Thirty one mutations were classified in the databases as either ‘deleterious’, ‘probably/possibly damaging’ or as ‘high/medium pathogenic’; another five nonsense and one splice-site variant were predicted to produce potentially harmful truncated proteins. Eight of the 81 mutations were categorized as putative driver mutations and have been found in other cancer types. Some mutations seem to influence ATPase and DNA translocation activities (R1162W), while others may alter protein stability (R877Q/H, R975H) or disrupt DNA binding and protein activity (R572*, X34_splice) suggesting CHD4 function may be affected. In vivo tumorigenecity studies in endometrial cancer have revealed R975H and R1162W as mutations that lead to CHD4 loss-of-function. Our study provides insight into the molecular mechanism whereby CHD4, and some of its mutants could play a role in breast cancer and suggest important implications for the biological comprehension and prognosis of breast cancer, identifying CHD4 as a novel therapeutic target for BC patients.
Purpose Bevacizumab is a monoclonal antibody that binds to vascular endothelial growth factor A. It is currently used in combination with chemotherapy to treat metastatic colorectal cancer. This therapy is not equally effective in every patient; in some, mechanisms of resistance arise that remain poorly understood. The aim of the present work was to determine whether the expression of 26 miRNAs could be associated with the effectiveness of bevacizumab plus chemotherapy, with progression-free survival (PFS), and with overall survival (OS) in metastatic colorectal cancer. Patients and Methods Paraffin-embedded biopsies from 76 patients with metastatic colorectal cancer were collected to isolate miRNAs. The expression of 26 miRNAs was analyzed by quantitative RT-PCR. For the purpose of analysis, patients were classified as either “responders” (PFS ≥6 months since beginning treatment) or “non-responders” (PFS <6 months). For the analysis of PFS and OS, patients were classified into two groups using the median gene expression value as the cut-off point (“high” [≥50% percentile] or “low” [<50% percentile]). Time-to-event data were analyzed using the Kaplan–Meier method and compared by the log rank test. Cox regression was used to estimate hazard ratios (HR) and their 95% confidence intervals. Results miR-7-5p and miR-10a-5p were more strongly expressed in non-responders than responders (p=0.049 and p=0.043, respectively), and OS was poorer in patients showing these higher expression levels (HR=2.54, 95% CI 1.42–4.55, p=0. 001, and HR=1.81, 95% CI 1.02–3.20, p=0.039, respectively). The overexpression of miR-143-3p, however, was associated with a better prognosis and significantly better PFS (HR=0.57; 95% CI: 0.33–0.96; p=0.033). Conclusion High expression values for miR-7-5p and miR-10a-5p might be considered markers of a poorer prognosis in patients with metastatic colorectal cancer treated with bevacizumab plus chemotherapy, while the same for miR-143-3p might be a marker of better outcomes.
The clinical presentations of COVID-19 may range from an asymptomatic or mild infection to a critical or fatal disease. Several host factors such as elderly age, male gender, and previous comorbidities seem to be involved in the most severe outcomes, but also an impaired immune response that causes a hyperinflammatory state but is unable to clear the infection. In order to get further understanding about this impaired immune response, we aimed to determine the association of specific HLA alleles with different clinical presentations of COVID-19. Therefore, we analyzed HLA Class I and II, as well as KIR gene sequences, in 72 individuals with Spanish Mediterranean Caucasian ethnicity who presented mild, severe, or critical COVID-19, according to their clinical characteristics and management. This cohort was recruited in Madrid (Spain) during the first and second pandemic waves between April and October 2020. There were no significant differences in HLA-A or HLA-B alleles among groups. However, despite the small sample size, we found that HLA-C alleles from group C1 HLA-C*08:02, -C*12:03, or -C*16:01 were more frequently associated in individuals with mild COVID-19 (43.8%) than in individuals with severe (8.3%; p = 0.0030; pc = 0.033) and critical (16.1%; p = 0.0014; pc = 0.0154) disease. C1 alleles are supposed to be highly efficient to present peptides to T cells, and HLA-C*12:03 may present a high number of verified epitopes from abundant SARS-CoV-2 proteins M, N, and S, thereby being allegedly able to trigger an efficient antiviral response. On the contrary, C2 alleles are usually poorly expressed on the cell surface due to low association with β2-microglobulin (β2M) and peptides, which may impede the adequate formation of stable HLA-C/β2M/peptide heterotrimers. Consequently, this pilot study described significant differences in the presence of specific HLA-C1 alleles in individuals with different clinical presentations of COVID-19, thereby suggesting that HLA haplotyping could be valuable to get further understanding in the underlying mechanisms of the impaired immune response during critical COVID-19.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.