Assessing a plant’s nutritional status and fertilizer rates and types that can optimize fruit quality and yield are critical in intensive apple orchards. The aim of this work was to identify correlations between nutrients in the different organs that allow the early diagnosis of the nutritional status and to assess the impact on the optimal nutrient content in apple leaves, as well as in the yield and quality of chemical and organic fertilization. Five orchards of ‘Gala’ were fertilized with different levels of NPK over a period of four years. Macro and micronutrients of buds, flowers, 45 and 90–110 days after full bloom (DAFB) leaves and 60 DAFB and 15 days before harvest (DBH) fruits were determined. Boron was the only element for which strong correlations, 0.7 < r < 0.9, were observed between all organ pairs. The fertilization treatments did not affect the nutrient concentrations in the leaves of 90–110 DAFB other than P, Ca and Mg and did not affect the macronutrients in the fruit. In one of the five orchards, the yield increased by 26% with double fertilization compared to standard fertilization and, for the other four orchards, the impact depended on the year. Fruit size was more related to crop load than to fertilization and TSS and firmness were not affected by the type or amount of fertilizers. Replacing part of the chemical fertilizer with organic materials did not affect productivity or fruit quality.
The aim of this work was to evaluate the photosynthetic performance of Pear trees (cv. ‘Rocha’) infected with Erwinia amylovora, three months after suffering a pruning of infected branches (P-trees) compared with asymptomatic trees (C-trees) of the same orchard. Three months after pruning, P-trees looked healthy and were negative for the presence of E. amylovora. In September of 2018, fully expanded leaves of both P- and C- trees were sampled and analysed for photosynthetic parameters related to chlorophyll a fluorescence and gas exchange, alongside with pigments, total soluble sugars, starch, and ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) contents. No significant differences were found in chlorophyll and carotenoids levels, but anthocyanins significantly decreased in P-trees. Also, despite the maximum quantum yield (Fv/Fm) significantly decreased in P-trees, the effective quantum yield of the PSII was maintained, paralleled with no changes in gas exchange parameters (PN, gs, Ci, E, iWUE, PN/gs), nor in RuBisCO relative content. Finally, the maintenance of the levels of total soluble sugars and starch also supports that the photosynthetic performance of P-trees, three months after pruning, reached values similar to those of the C-trees, contributing to the normal development and ripening of the fruit. Data support that pruning represents a reliable control measure against this quarantine pathogen. This work is the first evaluation of pruning in fire blight management regarding carbon metabolism in P. communis trees.
Apple and pear crops are very important to the rural economy of Portugal. Despite significant improvements in productivity and quality, due to the introduction of new management techniques, model-based decision support may further increase the revenue of the growers. Available simulation models of orchard growth and production are scarce and are often highly empirical. This study presents a mechanistic model for the simulation of productivity and fruit grade of apple and pear orchards under potential and water-limited conditions. The effects of temperature extremes and rain on fruit set are addressed. The model was validated on apple and pear datasets derived from extensive experiments conducted in Central and Southern Portugal. Model performance is high and depicts the effect of crop load on productivity and fruit-size grade and the distribution of both crops. A simulation example shows the relationship between productivity and average fruit size for a hypothetical six-year-olc apple orchard. The model herewith presented is a tool that can be used to estimate optimal crop load for maximum revenue and productivity, fruit size distribution, water use, and other variables relevant for pome fruit production.
Pears (Pyrus) are one of the most economically important fruits worldwide. The Pyrus genus is characterized by a high degree of genetic variability between species and interspecific hybrids, and several studies have been performed to assess this variability for both cultivated and wild accessions. These studies have mostly been limited by the resolving power of traditional molecular markers, although in the recent past the availability of reference genome sequences or SNP arrays for pear have enhanced the capability of high-resolution genomics studies. These tools can also be applied to better understand the intra-varietal (or clonal) variability in pear. Here we report the first high resolution genomics analysis of a pear clonal population using whole genome sequencing (WGS). Results showed unique signatures for the accumulation of mutations and transposable element insertions in each clone, which are likely related to their history of propagation and cultivation. The nucleotide diversity remained low in the clonal collection with the exception of few genomic windows, suggesting that balancing selection may be occurring. These windows included mainly genes related to plant fertility. Regions with higher mutational load were partially associated with transcription factors, probably reflecting the distinctive phenotypes in the collection. The annotation of variants also revealed the theoretical disruption of relevant genes in pear. Taken together, the results from this study show that pear clones accumulate mutations differently, and that those mutations can play a role on pear phenotypes, meaning that the study of pear clonal populations can be relevant in genetic studies, mainly when comparing with traditional association studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.