Summary This paper proposes an integrated damping system that aims at providing relatively high damping levels through the mobilization of a proportion of the structure's own mass. This offers significantly higher mass levels and, consequently, considerably more damping compared to conventional tuned mass dampers. Fluid viscous dampers are used to control accelerations in parallel with springs to resist the static loads applied to the moving mass. The advantages of employing relatively large mass levels in achieving considerable damping and reducing sensitivity to tuning are first analyzed using an idealized two degree of freedom structural representation. This is then followed by a description of the proposed “integrated damping system,” which is illustrated through a case study of a 250‐m tall building. The benefits of the proposed damping system are demonstrated through several numerical parametric assessments, as well as a selected suite of earthquake records. For the adopted case study, it is shown that, besides reducing the level of perceivable accelerations, the use of the suggested arrangement can offer an equivalent damping exceeding 50% of the critical damping, resulting in more than 40% reduction in the wind loads as well as over 60% reduction in displacement and acceleration response under seismic excitations.
Miguel Martinez-Paneda describes current performance-based design uses, and advocates the potential for its wider application in a holistic approach. Synopsis Performance-based design (PBD) originated as a response to the considerable structural and non-structural damage experienced by buildings during earthquakes in the 1990s. Its application is gradually extending into other fields in a trend that is likely to continue as the power of computational and analysis tools increases. PBD has the potential to deliver more resilient and reliable designs than a prescriptive code-based approach, and to allow the use of innovative materials and technologies, provided that reliability targets and performance goals are met. A move away from a one-size-fits-all code-based approach has the potential to result in significantly more economical and lower-carbon designs. This article describes current PBD uses and state of the art, and advocates the potential for its wider application in a holistic approach.
This paper examines the detailed performance of an integrated damping system (IDS) approach which was recently introduced to provide large damping levels by enabling two parts of a building to move independently through a parallel arrangement of springs and fluid viscous dampers. Extensive assessments into the characteristics and distribution of constituent dampers are illustrated through the dynamic response of a typical 300-m central-core building. Besides examining the system performance under typical wind conditions and selected seismic excitations, five damper placement methods are assessed for various linear and nonlinear damper exponents. It is shown that intermediate exponents provide the best overall response. However, when the design targets a particular damping, deformation or acceleration related performance parameter, specific combinations of damper exponent and distribution can result in an optimal application. Most importantly, due to the underlying IDS nature, which acts as an inherent large-mass damper, the findings show that the overall performance is not highly sensitive to the damper placement and does not necessitate the use of an advanced distribution. While specific placements can be adopted to refine targeted performance aspects where necessary, simple and practical uniform or stiffness proportional arrangements can be consistently employed with the IDS to provide a highly effective solution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.