A virus survey was conducted during the spring and autumn of 2001 and 2002 to determine the presence, prevalence and distribution in Spain of the viruses that are most commonly found infecting lettuce and Brassica worldwide. Crop plants showing virus symptoms from the principal lettuce and Brassica-growing regions of Spain, and some samples of the annual and perennial flora nearby, were tested by enzyme-linked immunosorbent assays using specific commercial antibodies against the following viruses: Alfalfa mosaic virus (AMV), Broad bean wilt virus 1 (BBWV-1), Beet western yellows virus (BWYV), Cauliflower mosaic virus (CaMV), Cucumber mosaic virus (CMV), Lettuce mosaic virus (LMV), Pea seed-borne mosaic virus (PSbMV), Turnip mosaic virus (TuMV) and Tomato spotted wilt virus (TSWV). Samples were also tested with a Potyvirus genus antibody. Virus incidence was much lower in spring than in autumn, especially in 2001. In spring 2002, CMV and LMV were the most prevalent viruses in lettuce, while CaMV was the most important virus present in Brassica crops grown in Navarra, followed by CMV and BWYV. In the autumn, the spectrum of viruses was different; potyviruses were widespread in lettuce grown in Madrid, but TSWV and BWYV were predominant in the Murcia region. The prevalent Potyvirus detected in lettuce fields was LMV, but none of the samples collected were positive for PSbMV or TuMV. In Brassica crops, TSWV was the most abundant in autumn-sown crops, especially in the Navarra region. All of the viruses present in lettuce and Brassica were also frequently detected in their associated natural vegetation at the same time, suggesting that they probably play an important role as virus reservoirs. Sonchus spp. were particularly common and were frequently infected with CMV, LMV and BWYV. Another common species, Chenopodium album, was often infected with TSWV and BWYV. Multiple infections were common, especially in non-crop plants, and the most common combination was BWYV and TSWV. The role of weeds in the epidemiology of viruses that infect lettuce and Brassica crops in Spain is discussed.
Lettuce mosaic virus (LMV) is transmitted by aphid vectors in a nonpersistent manner as well as by seeds. The virus causes severe disease outbreaks in commercial lettuce crops in several regions of Spain. The temporal and spatial patterns of spread of LMV were studied in autumn 2002 in the central region of Spain. Symptomatic lettuce (var. Cazorla) plant samples were collected weekly, first at the seedling stage from the greenhouse nursery and later outdoors after transplantation. The exact position of symptomatic plants sampled in the field was recorded and then material was tested by enzyme-linked immunosorbent assay to assess virus infection. Cumulative spatial data for infected plants at different growth stages were analysed using spatial analysis by distance indices. For temporal analysis, the monomolecular, Gompertz, logistic and exponential models were evaluated for goodness of fit to the entire set of disease progress data obtained. The results indicated that the disease progress curve of LMV epidemics in the selected area is best described by a Gompertz model and that the epidemic follows a polycyclic disease progression. Our data suggest that secondary cycle of spread occurs when noncolonising aphid species land on the primary infected plants (probably coming from infected seed) and move to adjacent plants before leaving the crop. The role of weeds growing close to lettuce fields as potential inoculum sources of virus and the aphid species most likely involved in the transmission of LMV were also identified.
Four cultivars of broccoli (Brassica oleracea L. variety ÔitalicaÕ), two cultivars of early caulißower (Brassica oleracea L. variety ÔbotrytisÕ), four cultivars of late caulißower, and one cultivar of red cabbage (Brassica oleracea L. variety ÔcapitataÕ) were screened to determine some reproductive parameters of Aleyrodes proletella L. in a no-choice assay. The highest and lowest oviposition rates and production of pupae and adults were obtained with late caulißower (cultivar Picasso) and red cabbage (cultivar Cabeza negra), respectively. The highest percentages of adult emergence (indicating survival from egg to adult) were obtained on broccoli (cultivar Chevalier) and late caulißower (cultivars Mayfair and Picasso), whereas the lowest was obtained on late caulißower (cultivar Arbon). In a choice experiment, A. proletella preferred late caulißower (cultivar Picasso) and broccoli (cultivar Agripa) to red cabbage (cultivar Cabeza negra). SigniÞcantly more adults per day, and more pupae and empty pupal cases per plant, were found on broccoli and caulißower cultivars than on red cabbage. In another no-choice assay at 22 Ϯ 1.5ЊC, A. proletella required signiÞcantly more days for development on red cabbage than on broccoli and caulißower cultivars. A. proletella developed signiÞcantly faster on broccoli cultivars Agripa and Chevalier and late caulißower cultivars Mayfair and Picasso. These results suggest that it is important to minimize the use of broccoli (cultivars Agripa and Chevalier) and late caulißower (cultivars Mayfair and Picasso) to avoid the risk of further expansion of whiteßy populations where these Brassica crops and A. proletella are present.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.