Abstract. We define a logical framework with singleton types and one universe of small types. We give the semantics using a PER model; it is used for constructing a normalisation-by-evaluation algorithm. We prove completeness and soundness of the algorithm; and get as a corollary the injectivity of type constructors. Then we give the definition of a correct and complete type-checking algorithm for terms in normal form. We extend the results to proof-irrelevant propositions.
Abstract. We define a logical framework with singleton types and one universe of small types. We give the semantics using a PER model; it is used for constructing a normalisation-by-evaluation algorithm. We prove completeness and soundness of the algorithm; and get as a corollary the injectivity of type constructors. Then we give the definition of a correct and complete type-checking algorithm for terms in normal form. We extend the results to proof-irrelevant propositions.
We lay the ground for an Isabelle/ZF formalization of Cohen's technique of forcing. We formalize the definition of forcing notions as preorders with top, dense subsets, and generic filters. We formalize a version of the principle of Dependent Choices and using it we prove the Rasiowa-Sikorski lemma on the existence of generic filters.Given a transitive set M , we define its generic extension M [G], the canonical names for elements of M , and finally show that if M satisfies the axiom of pairing, then M [G] also does. We also prove M [G] is transitive.
We introduce a new formulation of pure type systems (PTSs) with explicit substitution and de Bruijn indices and formally prove some of its meta-theory. Using techniques based on Normalisation by Evaluation, we prove that untyped conversion can be typed for predicative PTSs. Although this equivalence was settled by Siles and Herbelin for the conventional presentation of PTSs, we strongly conjecture that our proof method can also be applied to PTSs with η.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.