Anion‐π catalysis functions by stabilizing anionic transition states on aromatic π surfaces, thus providing a new approach to molecular transformation. The delocalized nature of anion–π interactions suggests that they serve best in stabilizing long‐distance charge displacements. Aiming therefore for an anionic cascade reaction that is as charismatic as the steroid cyclization is for conventional cation‐π biocatalysis, reported here is the anion‐π‐catalyzed epoxide‐opening ether cyclizations of oligomers. Only on π‐acidic aromatic surfaces having a positive quadrupole moment, such as hexafluorobenzene to naphthalenediimides, do these polyether cascade cyclizations proceed with exceptionally high autocatalysis (rate enhancements kauto/kcat >104 m−1). This distinctive characteristic adds complexity to reaction mechanisms (Goldilocks‐type substrate concentration dependence, entropy‐centered substrate destabilization) and opens intriguing perspectives for future developments.
The concept of anion–π catalysis focuses on the stabilization of anionic transition states on aromatic π surfaces. Recently, we demonstrated the occurrence of epoxide‐opening ether cyclizations on aromatic π surfaces. Although the reaction proceeded through unconventional mechanisms, the obtained products are the same as those from conventional Brønsted acid catalysis, and in agreement with the Baldwin selectivity rules. Different mechanisms, however, should ultimately lead to new products, a promise anion–π catalysis has been reluctant to live up to. Herein, we report non‐trivial reactions that work with anion–π catalysis, but not with Brønsted acids, under comparable conditions. Namely, we show that the anion–π templated autocatalysis and epoxide opening with alcoholate–π interactions can provide access to unconventional ring chemistry. For smaller rings, anion–π catalysis affords anti‐Baldwin oxolanes, 2‐oxabicyclo[3.3.0]octanes, and the expansion of Baldwin oxetanes by methyl migration. For larger rings, anion–π templated autocatalysis is thought to alleviate the entropic penalty of folding to enable disfavored anti‐Baldwin cyclizations into oxepanes and oxocanes.
Pnictogen‐bonding catalysis and supramolecular σ‐hole catalysis in general is currently being introduced as the non‐covalent counterpart of covalent Lewis acid catalysis. With access to anti‐Baldwin cyclizations identified as unique characteristic, pnictogen‐bonding catalysis appeared promising to elucidate one of the hidden enigmas of brevetoxin‐type epoxide opening polyether cascade cyclizations, that is the cyclization of certain trans epoxides into cis‐fused rings. In principle, a shift from SN2‐ to SN1‐type mechanisms could suffice to rationalize this inversion of configuration. However, the same inversion could be explained by a completely different mechanism: Ring opening with C−C bond cleavage into a branched hydroxy‐5‐enal and the corresponding cyclic hemiacetal, followed by cascade cyclization under conformational control, including stereoselective C−C bond formation. In this report, a pnictogen‐bonding supramolecular SbV catalyst is used to demonstrate that this unorthodox polyether cascade cyclization mechanism occurs.
A new Pd-catalyzed autotandem reaction is introduced that consists of the cross-coupling of a benzyl bromide with a N-tosylhydrazone followed by an intramolecular Heck reaction with an aryl bromide. During the process, a single and a double C-C bond are formed on the same carbon atom. Two different arrangements for the reactive functional groups are possible, rendering great flexibility to the transformation. The same strategy led to 9-methylene-9H-fluorenes, 9-methylene-9H-xanthenes, 9-methylene-9,10-dihydroacridines, and also dihydropyrroloisoquinoline and dihydroindoloisoquinoline derivatives.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.