The arginine-vasopressin (AVP)-containing hypothalamic magnocellular neurosecretory neurons (VPMNNs) are known for their role in hydro-electrolytic balance control via their projections to the neurohypophysis. Recently, projections from these same neurons to hippocampus, habenula and other brain regions in which vasopressin infusion modulates contingent social and emotionally-affected behaviors, have been reported. Here, we present evidence that VPMNN collaterals also project to the amygdaloid complex, and establish synaptic connections with neurons in central amygdala (CeA). The density of AVP innervation in amygdala was substantially increased in adult rats that had experienced neonatal maternal separation (MS), consistent with our previous observations that MS enhances VPMNN number in the paraventricular (PVN) and supraoptic (SON) nuclei of the hypothalamus. In the CeA, V1a AVP receptor mRNA was only observed in GABAergic neurons, demonstrated by complete co-localization of V1a transcripts in neurons expressing Gad1 and Gad2 transcripts in CeA using the RNAscope method. V1b and V2 receptor mRNAs were not detected, using the same method. Water-deprivation (WD) for 24 h, which increased the metabolic activity of VPMNNs, also increased anxiety-like behavior measured using the elevated plus maze (EPM) test, and this effect was mimicked by bilateral microinfusion of AVP into the CeA. Anxious behavior induced by either WD or AVP infusion was reversed by CeA infusion of V1a antagonist. VPMNNs are thus a newly discovered source of CeA inhibitory circuit modulation, through which both early-life and adult stress coping signals are conveyed from the hypothalamus to the amygdala.
Serotonin communication operates mainly in the extracellular space and cerebrospinal fluid (CSF), using volume transmission with serotonin moving from source to target cells (neurons and astroglia) via energy gradients, leading to the diffusion and convection (flow) of serotonin. One emerging concept in depression is that disturbances in the integrative allosteric receptor–receptor interactions in highly vulnerable 5-HT1A heteroreceptor complexes can contribute to causing major depression and become novel targets for the treatment of major depression (MD) and anxiety. For instance, a disruption and/or dysfunction in the 5-HT1A-FGFR1 heteroreceptor complexes in the raphe-hippocampal serotonin neuron systems can contribute to the development of MD. It leads inter alia to reduced neuroplasticity and potential atrophy in the raphe-cortical and raphe-striatal 5-HT pathways and in all its forebrain networks. Reduced 5-HT1A auto-receptor function, increased plasticity and trophic activity in the midbrain raphe 5-HT neurons can develop via agonist activation of allosteric receptor–receptor interactions in the 5-HT1A-FGFR1 heterocomplex. Additionally, the inhibitory allosteric receptor–receptor interactions in the 5-HT1AR-5-HT2AR isoreceptor complex therefore likely have a significant role in modulating mood, involving a reduction of postjunctional 5-HT1AR protomer signaling in the forebrain upon activation of the 5-HT2AR protomer. In addition, oxytocin receptors (OXTRs) play a significant and impressive role in modulating social and cognitive related behaviors like bonding and attachment, reward and motivation. Pathological blunting of the OXTR protomers in 5-HT2AR and especially in 5-HT2CR heteroreceptor complexes can contribute to the development of depression and other types of psychiatric diseases involving disturbances in social behaviors. The 5-HTR heterocomplexes are novel targets for the treatment of MD.
The intercalated islands, clusters of dopamine D1-rich GABAergic neurons, are interposed between the basolateral and central nuclei of the amygdala, and control the traffic of nerve impulses between these two structures. Metabotropic glutamate receptor 5- (mGluR5)-like immunoreactivity was studied by immunohistochemistry in this part of the amygdala and was found to be mainly restricted to the central and basolateral nuclei and to a lesser extent to the medial paracapsular intercalated islands. The role of the metabotropic glutamate receptor 5 in the modulation of anxiety has been studied in this region by microinjection of small volumes of the mGluR5 antagonist 2-methyl-6(phenylethenyl) pyridine (MPEP), with restricted diffusion from its injection site, into the rostral amygdala near the basolateral and central amygdaloid nuclei and the intercalated islands, and the behavior of the animals was evaluated using three non-conditioned models of anxiety. Anxiolytic-like effects were observed after MPEP administration in all tests used. In the White and Black Box test, MPEP (2 nmol per side) significantly increased the time spent in the white compartment of the box. In line with these results, MPEP (8 nmol per side) increased the exploration of the open arms of the Elevated Plus-Maze. Burying behavior latency was increased and burying behavior itself was decreased in the Shock-Probe Burying test. It is suggested that anxiolytic effects of MPEP may be mediated by blockade of mGluR5 in the basolateral and/or central amygdaloid nuclei, reducing glutamate transmission in the basolateral amygdaloid nuclei and glutamate output from the central amygdala.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.