Sustainable transportation is one of the major concerns in cities. This concern involves all type of movements motivated by different goals (mobility of citizens, transportation of goods and parcels, etc.). The main goal of this work is to provide an intelligent approach for Sustainable Last Mile Delivery, by reducing (or even deleting) the need of dedicated logistic moves (by cars, and/or trucks). The method attempts to reduce the number of movements originated by the parcels delivery by taking advantage of the citizens’ movements. In this way our proposal follows a crowdsourcing approach, in which the citizens that moves in the city, because of their own needs, become temporal deliverers. The technology behind our approach relays on Multi-agent System techniques and complex network-based algorithms for optimizing sustainable delivery routes. These artificial intelligent approaches help to reduce the complexity of the scenario providing an efficient way to integrate the citizens’ routes that can be executed using the different transportation means and networks available in the city (public system, private transportation, eco-vehicles sharing systems, etc.). A complex network-based algorithm is used for computing and proposing an optimized Sustainable Last Mile Delivery route to the crowd. Moreover, the executed tests show the feasibility of the proposed solution, together with a high reduction of the CO 2 emission coming from the delivery trucks that, in the case studies, are no longer needed for delivery.
In this paper, we describe the deep learning-based COVID-19 cases predictor and the Pareto-optimal Non-Pharmaceutical Intervention (NPI) prescriptor developed by the winning team of the 500k XPRIZE Pandemic Response Challenge, a four-month global competition organized by the XPRIZE Foundation. The competition aimed at developing datadriven AI models to predict COVID-19 infection rates and to prescribe NPI Plans that governments, business leaders and organizations could implement to minimize harm when reopening their economies. In addition to the validation performed by XPRIZE with real data, the winning models were validated in a real-world scenario thanks to an ongoing collaboration with the Valencian Government in Spain. We believe that this experience contributes to the necessary transition to more evidencedriven policy-making, particularly during a pandemic.
Technology Management Centres provide technological and customer support services for private or public organisations. Commonly, these centres offer support using a helpdesk software that facilitates the work of their operators. In this paper, a CBR module that acts as a solution recommender for customer support environments is presented. The CBR module is flexible and multi-domain, in order to be easily integrable with any existing helpdesk software in the company.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.