ObjectivesTo present a model that enhances the accuracy of clinicians when presented with a possibly critical Covid-19 patient.MethodsA retrospective study was performed with information of 5,745 SARS-CoV2 infected patients admitted to the Emergency room of 4 public Hospitals in Madrid belonging to Quirón Salud Health Group (QS) from March 2020 to February 2021. Demographics, clinical variables on admission, laboratory markers and therapeutic interventions were extracted from Electronic Clinical Records. Traits related to mortality were found through difference in means testing and through feature selection by learning multiple classification trees with random initialization and selecting the ones that were used the most. We validated the model through cross-validation and tested generalization with an external dataset from 4 hospitals belonging to Sanitas Hospitals Health Group. The usefulness of two different models in real cases was tested by measuring the effect of exposure to the model decision on the accuracy of medical professionals.ResultsOf the 5,745 admitted patients, 1,173 died. Of the 110 variables in the dataset, 34 were found to be related with our definition of criticality (death in <72 hours) or all-cause mortality. The models had an accuracy of 85% and a sensitivity of 50% averaged through 5-fold cross validation. Similar results were found when validating with data from the 4 hospitals from Sanitas. The models were found to have 11% better accuracy than doctors at classifying critical cases and improved accuracy of doctors by 12% for non-critical patients, reducing the cost of mistakes made by 17%.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.