Recent data indicate that melatonin inhibits brain glutamate receptors and nitric oxide production, thus suggesting that it may exert a neuroprotective and antiexcitotoxic effect. Melatonin has been seen to prevent seizures in several animal models and to decrease epileptic manifestations in humans. The lack of response to conventional anticonvulsants in an epileptic child led us to use melatonin in this case. A female child who began to have convulsive seizures at the age of 1.5 months and was diagnosed as having severe myoclonic epilepsy was unsuccessfully treated with different combinations of anticonvulsants, including valproic acid, phenobarbital, clonazepam, vigabatrin, lamotrigin, and clobazam. Melatonin was thus added to the treatment. Imaging studies (CT, SPECT, and MNR), EEG recordings, blood biochemical, and hematological analyses, including measures of the circadian rhythm of melatonin, were made. The child was initially treated with various anticonvulsants. Severe neurological and psychomotor deterioration combined with increased seizure activity showed a lack of response to the treatment. At the age of 29 mon the patient was in a pre-comatose stage at which time melatonin was added to treatment. After 1 month of melatonin plus phenobarbital therapy and for a year thereafter, the child's seizures were under control. On reducing the melatonin dose after this time, however, seizures resumed and the patient's condition was re-stabilized after restoring melatonin. Prior to our attempts to reduce melatonin, all analyses, including EEG recordings and SPECT, were normal. As far as the results of neurological examination are concerned, only mild hypotony without focalization remained. Changes in the therapeutic schedules during the second year of melatonin treatment, including the withdrawal of phenobarbital, did not result in the same degree of seizure control, although progressively the child became satisfactorily controlled. At the present moment the child continues to have mild hypotony and shows attention disorder and irritability. Melatonin has proven to be useful as adjunctive therapy in the clinical control of this case of severe infantile myoclonic epilepsy. The results suggest that melatonin may have a useful role in mechanisms of neuroprotection and also indicate its use in other cases of untreatable epilepsy. Further studies using more patients and placebo-treatment would be beneficial in understanding the potential use of melatonin as a co-therapy in some cases of seizures.
Melatonin ( N-acetyl-5-methoxytryptamine, aMT) is an indoleamine produced by several organs and tissues including the pineal gland. Melatonin (aMT) modulates the activity of the brain, mainly acting on both GABA and glutamate receptors. Previous studies have shown the participation of melatonin in the control of convulsive crises, suggesting that aMT concentration increases during seizures, and that patients with seizures of diverse origins show an alteration of the aMT rhythm. However, what is not known is the duration of the aMT response to seizures, and whether aMT changes during seizures could be a marker of the disease. For this reason, the serum levels of aMT in 54 children with a convulsive crisis, febrile and epileptic, were analyzed during the crisis, as well as at 1 h and 24 hours after the seizure. The results show that aMT significantly increases during the seizure (Day group, 75.64+/-45.91 and Night group, 90.69+/-51.85 pg/mL), with normal values being recovered 1 h later (Day group, 26.33+/-10.15 and Night group, 27.78+/-7.82 pg/mL) and maintained for up to 24 hours, when the circadian variation of aMT returns to the normal acrophase. Due to the interindividual variation of aMT levels among healthy people, a single determination of the indoleamine concentration is not a suitable marker of the existence of a convulsive crisis unless the circadian profile of aMT secretion in the patient is known. The results obtained also support the view that the stimulation of aMT production by the convulsive crisis may participate in the response of the organism against the seizures.
The pineal gland classically has been considered as a vestigial and mystic organ. In the last decades, and with the incorporation of new methodologic procedures, it could be proved that it also has physiologic actions that vary depending on the level of the phylogenetic scale. Its best-known secretion, melatonin, has been related to many different actions, such as sleep promotion, control of biologic rhythms, hormonal inhibition, and an inhibiting action on central nervous system regulation mechanisms. In animal experimentation, there are papers even accepting an anticonvulsant effect. In humans, evidence is reduced to few experiences. In addition to this clinical experience, there is other evidence that clearly relates melatonin to convulsive phenomena. This relationship must be mediated by the following mechanisms attributed to melatonin: altered brain GABAergic neurotransmission, its known interaction with benzodiazepinic brain receptors, through tryptophan metabolite activity (kynurenine, kynurenic acid), or even by its efficacy as a free-radical scavenger.
Hepatobiliary involvement is uncommon in Kawasaki disease, and it is usually described as obstructive jaundice. From January 01, 2000 to August 31, 2010, 31 Kawasaki disease cases were diagnosed in our center. Three of them (9.7%) developed jaundice, but there were no gallbladder or bile duct abnormalities by ultrasonography, a feature rarely reported. Resolution of cholestasis paralleled improvement of the illness.
Deficiency in the interleukin12/INFgamma pathway is a genetic condition that predisposes to some infections, including nontuberculous mycobacteria infection and extraintestinal salmonellosis. We report 2 cases in sisters who were diagnosed with a genetic defect caused by a new mutation in Interleukin-12 receptor β1 chain (IL12Rβ1) leading to different clinical presentations and responses to therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.