The distinctive prismatic geometry of semiconductor core-shell nanowires leads to complex localization patterns of carriers. Here, we describe the formation of optically active in-gap excitonic states induced by the interplay between localization of carriers in the corners and their mutual Coulomb interaction. To compute the energy spectra and configurations of excitons created in the conductive shell, we use a multi-electron numerical approach based on the exact solution of the multi-particle Hamiltonian for electrons in the valence and conduction bands, which includes the Coulomb interaction in a nonperturbative manner. We expose the formation of well separated quasidegenerate levels, and focus on the implications of the electron localization in the corners or on the sides of triangular, square and hexagonal cross sections. We obtain excitonic in-gap states associated with symmetrically distributed electrons in the spin singlet configuration. They acquire large contributions due to Coulomb interaction, and thus are shifted to much higher energies than other states corresponding to the conduction electron and the vacancy localized in the same corner. We compare the results of the multi-electron method with those of an electron-hole model and we show that the latter does not reproduce the singlet excitonic states. We also obtain the exciton lifetime and explain selection rules which govern the recombination process.
We discuss the low energy electronic states in hexagonal rings. These states correspond to the transverse modes in core-shell nanowires built of III-V semiconductors which typically have a hexagonal cross section. In the case of symmetric structures the 12 lowest states (including the spin) are localized in the corners, while the next following 12 states are localized mostly on the sides. Depending on the material parameters, in particular the effective mass, the ring diameter and width, the corner and side states may be separated by a considerable energy gap, ranging from few to tens of meV. In a realistic fabrication process geometric asymmetries are unavoidable, and therefore the particles are not symmetrically distributed between all corner and side areas.Possibly, even small deformations may shift the localization of the ground state to one of the sides. The transverse states or the transitions between them may be important in transport or optical experiments. Still, up to date, there are only very few experimental investigations of the localization-dependent properties of core-shell nanowires. arXiv:1907.06764v1 [cond-mat.mes-hall]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.