A new photonic RF instantaneous frequency measurement system is proposed and experimentally demonstrated. A frequency measurement independent of the optical input power and microwave modulation index is achieved by using the constructive and destructive ports of a polarization-domain interferometer. Experimental tests yield a peak-to-peak frequency error lower than 200 MHz for a frequency range of 1-18 GHz.
Ubiquitous satellite communications are in a leading position for bridging the digital divide. Fulfilling such a mission will require satellite services on par with fibre services, both in bandwidth and cost. Achieving such a performance requires a new generation of communications payloads powered by large-scale processors, enabling a dynamic allocation of hundreds of beams with a total capacity beyond 1 Tbit s
−1
. The fact that the scale of the processor is proportional to the wavelength of its signals has made photonics a key technology for its implementation. However, one last challenge hinders the introduction of photonics: while large-scale processors demand a modular implementation, coherency among signals must be preserved using simple methods. Here, we demonstrate a coherent photonic-aided receiver meeting such demands. This work shows that a modular and coherent photonic-aided payload is feasible, making way to an extensive introduction of photonics in next generation communications satellites.
Optical wavelength conversion (OWC) is expected to be a desirable function in future optical transparent networks. Since high-order quadrature amplitude modulation (QAM) is more sensitive to the phase noise, in the OWC of high-order QAM signals, it is crucial to suppress the extra noise introduced in the OWC subsystem, especially for the scenario with multiple cascaded OWCs. Here, we propose and experimentally demonstrate a pump-linewidth-tolerant OWC scheme suitable for high-order QAM signals using coherent two-tone pumps. Using 3.5-MHz-linewidth distributed feedback (DFB) lasers as pump sources, our scheme enables wavelength conversion of both 16QAM and 64QAM signals with negligible power penalty, in a periodically-poled Lithium Niobate (PPLN) waveguide based OWC. We also demonstrate the performance of pump phase noise cancellation, showing that such coherent two-tone pump schemes can eliminate the need for ultra-narrow linewidth pump lasers and enable practical implementation of low-cost OWC in future dynamic optical networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.