Nowadays, many data analysts are domain experts, but they lack programming skills. As a result, many of them can provide examples of data transformations but are unable to produce the desired query. Hence, there is an increasing need for systems capable of solving the problem of Query Reverse Engineering (QRE). Given a database and output table, these systems have to find the query that generated this table. We present SQUARES, a program synthesis tool based on input-output examples that can help data analysts to extract and transform data by synthesizing SQL queries, and table manipulation programs using the R language.
Visual Programming Languages (VPLs), coupled with the high-level abstractions that are commonplace in visual programming environments, enable users with less technical knowledge to become proficient programmers. However, the lower skill floor required by VPLs also entails that programmers are more likely to not adhere to best practices of software development, producing systems with high technical debt, and thus poor maintainability. Duplicated code is one important example of such technical debt. In fact, we observed that the amount of duplication in the OutSystems VPL code bases can reach as high as 39%.Duplicated code detection in text-based programming languages is still an active area of research with important implications regarding software maintainability and evolution. However, to the best of our knowledge, the literature on duplicated code detection for VPLs is very limited. We propose a novel and scalable duplicated code pattern mining algorithm that leverages the visual structure of VPLs in order to not only detect duplicated code, but also highlight duplicated code patterns that explain the reported duplication. The performance of the proposed approach is evaluated on a wide range of real-world mobile and web applications developed using OutSystems. CCS CONCEPTS• Software and its engineering → Maintaining software; Software verification and validation; • Theory of computation → Automated reasoning. * This is an extended version of a paper accepted for publication in the industrial track of the Symposium on the Foundations of Software Engineering (FSE) 2021.
No abstract
Form validators based on regular expressions are often used on digital forms to prevent users from inserting data in the wrong format. However, writing these validators can pose a challenge to some users.We present Forest, a regular expression synthesizer for digital form validations. Forest produces a regular expression that matches the desired pattern for the input values and a set of conditions over capturing groups that ensure the validity of integer values in the input. Our synthesis procedure is based on enumerative search and uses a Satisfiability Modulo Theories (SMT) solver to explore and prune the search space. We propose a novel representation for regular expressions synthesis, multi-tree, which induces patterns in the examples and uses them to split the problem through a divide-and-conquer approach. We also present a new SMT encoding to synthesize capture conditions for a given regular expression. To increase confidence in the synthesized regular expression, we implement user interaction based on distinguishing inputs.We evaluated Forest on real-world form-validation instances using regular expressions. Experimental results show that Forest successfully returns the desired regular expression in 70% of the instances and outperforms Regel, a state-of-the-art regular expression synthesizer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.