The temperature field along the thickness of the specimens has been measured during transmission laser welding. Polyetherketoneketone (PEKK) is a very high performance thermoplastic with tunable properties. We have shown that this grade of PEKK can be turned to quasi-amorphous or semi-crystalline material, due to its slow kinetics of crystallization. Its glass transition temperature is 150 °C. The effect of its crystalline rate directly impacts its optical properties: the transmittance of quasi-amorphous PEKK is about 60% in the NIR region (wavelength range from 0.4 to 1.2 µm) whereas it is less than 3% for the semi-crystalline material. The welding tests have been carried out with an 808 nm laser diode apparatus. The heat field is recorded during the welding experiment by infrared thermography with the camera sensor perpendicular to the lasersheet and to the sample's length to focus on the welded interface. The study is divided in two steps: firstly, a single specimen is irradiated with an energy density of 22 J.mm − 2 : the whole sample thickness is heated up, the maximum temperature reaches 222 ± 7 °C. This temperature corresponds to about T g + 70 °C, but the polymer does not reach its melting temperature. After that, welding tests were performed: a transparent (quasi-amorphous) sample as the upper part and an opaque (semi-crystalline) one as the lower part were assembled in static conditions. The maximum temperature reached at the welded interface is about 295 °C when the upper specimen is irradiated for 16 s with an energy density of 28 J.mm − 2 . The temperature at the welded interface stays above T g during 55 s and reached the melting temperature during 5 s before rapid cooling. These parameters are suitable to assemble both polymeric parts in a strong weld. This work shows that infrared thermography is an appropriate technique to improve the reliability of laser welding process of high performance thermoplastics.
In this work, the temperature distribution inside the specimens has been measured during transmission laser welding. The material studied is a high performance thermoplastic of the polyaryletherketone (PAEK) family. The assembly consists of a quasi-amorphous sample as the upper part and a semi-crystalline sample as the lower part. The temperature fields were measured by infrared thermography with the camera sensor perpendicular to the welded interface. With an energy beam of 28 J.mm-2 and irradiation time of 15s, we have noticed that the maximum temperature inside the sample is kept far from the PAEK degradation one. Moreover, the temperature at the interface reaches the melting temperature thus assuring enough mobility for polymeric chains to get adhesion at the interface. Finally, the location and size of the heat-affected zone (HAZ) has been determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.