Selective Harmonics Elimination is a high-efficiency modulation method for multilevel inverters that allows handling very high voltage applications. It eliminates the most significant harmonics and fixes the desired fundamental component. The main issue of these techniques is the complex process to obtain the appropriate switching-angles, being necessary to calculate them offline, meaning that if some disturbances occur, the system will not be compensated. This article proposes a real-time selective harmonic elimination for a single-phase cascaded multilevel inverter. The control strategy maintains constant the fundamental component of the output voltage while removing its third, fifth, and seventh order harmonics. The switching-angles are dynamically adapted to compensate for variations in the input voltage and the load. This is done by obtaining a virtual dynamic system using Groebner basis, an adaptation of the Newton-Raphson method, and implementing a digital PI controller into the virtual dynamical model. This adaptive modulation technique is validated experimentally in a 200 W, 9-levels Cascaded Full Bridge Inverter, canceling the harmonics and regulating the fundamental components in all the tests. The developed theory can be adapted or extended for any multilevel inverter modulated by selective harmonic elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.