Discovering individuals' suicidality on social media has become increasingly important. Many researchers have studied to detect suicidality by using a suicide dictionary. However, while prior work focused on matching a word in a post with a suicide dictionary without considering contexts, little attention has been paid to how the word can be associated with the suicide-related context. To address this problem, we propose a suicidality detection model based on a graph neural network to grasp the dynamic semantic information of the suicide vocabulary by learning the relations between a given post and words. The extensive evaluation demonstrates that the proposed model achieves higher performance than the state-of-the-art methods. We believe the proposed model has great utility in identifying the suicidality of individuals and hence preventing individuals from potential suicide risks at an early stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.