A novel wearable smart patch can monitor various aspects of physical activity, including the dynamics of running, but like any new device developed for such applications, it must first be tested for validity. Here, we compare the step rate while running in place as measured by this smart patch to the corresponding values obtained utilizing ‘‘gold standard’’ MEMS accelerometers in combination with bilateral force plates equipped with HBM load cells, as well as the values provided by a three-dimensional motion capture system and the Garmin Dynamics Running Pod. The 15 healthy, physically active volunteers (age = 23 ± 3 years; body mass = 74 ± 17 kg, height = 176 ± 10 cm) completed three consecutive 20-s bouts of running in place, starting at low, followed by medium, and finally at high intensity, all self-chosen. Our major findings are that the rates of running in place provided by all four systems were valid, with the notable exception of the fast step rate as measured by the Garmin Running Pod. The lowest mean bias and LoA for these measurements at all rates were associated consistently with the smart patch.
A three-dimensional motion capture system (MoCap) and the Garmin Running Dynamics Pod can be utilised to monitor a variety of dynamic parameters during running. The present investigation was designed to examine the validity of these two systems for determining ground contact times while running in place by comparing the values obtained with those provided by the bilateral force plate (gold standard). Eleven subjects completed three 20-s runs in place at self-selected rates, starting slowly, continuing at an intermediate pace, and finishing rapidly. The ground contact times obtained with both systems differed significantly from the gold standard at all three rates, as well as for all the rates combined (p < 0.001 in all cases), with the smallest mean bias at the fastest step rate for both (11.5 ± 14.4 ms for MoCap and −81.5 ± 18.4 ms for Garmin). This algorithm was developed for the determination of ground contact times during normal running and was adapted here for the assessment of running in place by the MoCap, which could be one explanation for its lack of validity. In conclusion, the wearables developed for monitoring normal running cannot be assumed to be suitable for determining ground contact times while running in place.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.