Particle accelerator failures lead to unscheduled downtime and lower reliability. Although simple to mitigate while they are actually happening such failures are difficult to predict or identify beforehand. In this work we propose using machine learning approaches to predict machine failures via beam current measurements before they actual occur. To demonstrate this technique in this paper we examine beam pulses from the Oakridge Spallation Neutron Source (SNS). By evaluating a pulse against a set of common classification techniques we show that accelerator failure can be identified prior to actually failing with almost 80% accuracy. We also show that tuning classifier parameters and using pulse properties for refining datasets can further lead to almost 92% accuracy in classification of bad pulses. Most importantly, in the paper we establish there is information about the failure encoded in the pulses prior to it, so we also present a list of feasible next steps for increasing pulse classification accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.