This paper introduces a rapidly deployable wireless network based on Low Altitude Platforms and portable land units to support disaster-relief activities, and to extend capacity during temporary mass events. The system integrates an amalgam of radio technologies such as LTE, WLAN and TETRA to provide heterogeneous communications in the deployment location. Cognitive radio is used for autonomous network configuration. Sensor networks monitor the environment in real-time during relief activities and provide distributed spectrum sensing capacities. Finally, remote communications are supported via S-band satellite links.
The electricity production and distribution is facing two major changes. First, the production is shifting from classical energy sources such as coal and nuclear power towards renewable resources such as solar and wind. Secondly, the consumption in the low voltage grid is expected to grow significantly due to expected introduction of electrical vehicles. The first step towards more efficient operational capabilities is to introduce an observability of the distribution system and allow for leveraging the flexibility of end connection points with manageable consumption, generation and storage capabilities. Thanks to the advanced measurement devices, management framework, and secure communication infrastructure developed in the FP7 SUNSEED project, the Distribution System Operator (DSO) now has full observability of the energy flows at the medium/low voltage grid. Furthermore, the prosumers are able to participate pro-actively and coordinate with the DSO and other stakeholders in the grid. The monitoring and management functionalities have strong requirements to the communication latency, reliability and security. This paper presents novel solutions and analyses of these aspects for the SUNSEED scenario, where the smart grid ICT solutions are provided through shared cellular LTE networks.
Network testing plays an important role in the iterative process of developing new communication protocols and algorithms.However, test environments have to keep up with the evolution of technology and require continuous update and redesign. In this paper, we propose COINS, a framework that can be used by wireless technology developers to enable continuous integration (CI) practices in their testbed infrastructure. As a proof-ofconcept, we provide a reference architecture and implementation of COINS for controlled testing of multi-technology 5G Machine Type Communication (MTC) networks. The implementation upgrades an existing wireless experimentation testbed with new software and hardware functionalities. It blends web service technology and operating system virtualization technologies with emerging Internet of Things technologies enabling CI for wireless networks. Moreover, we also extend an existing qualitative methodology for comparing similar frameworks and identify and discuss open challenges for wider use of CI practices in wireless technology development.
Combining some of the best terrestrial and satellite systems' characteristics, high altitude platforms (HAPs) have recently emerged as an alternative solution for the provision of broadband services. Characterised by challenging propagation conditions in the allocated frequency bands, they require efficient utilisation of radio interface in order to make best use of the available spectrum. This paper analyses possible utilisation of DVB-S2 standard on HAPs, focusing on the performance of its adaptive coding and modulation (ACM) procedures as a mean of maximizing the link reliability and throughput. Two distinct operating scenarios are addressed, one assuming static channel conditions with the applied rain fading and the other representing mobile channel conditions along a representative railway track. We show that by considering only a subset of transmission modes (MODCODs) defined by the DVB-S2 standard, the system could be optimized in terms of achievable spectral efficiency as well as in terms of implementation complexity. A procedure for optimal MODCOD subset selection is proposed, taking into account the predefined switching thresholds and round-trip time delay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.