The seminal contributions by Sonogashira, Cassar and Heck in mid 1970s on Pd/Cu- and Pd-catalysed (copper-free) coupling of acetylenes with aryl or vinyl halides have evolved in myriad applications. Despite the enormous success both in academia and in industry, however, critical mechanistic questions of this cross-coupling process remain unresolved. In this study, experimental evidence and computational support is provided for the mechanism of copper-free Sonogashira cross-coupling reaction. In contrast to the consensus monometallic mechanism, the revealed pathway proceeds through a tandem Pd/Pd cycle linked via a multistep transmetallation process. This cycle is virtually identical to the Pd/Cu tandem mechanism of copper co-catalysed Sonogashira cross-couplings, but the role of CuI is played by a set of PdII species. Phosphine dissociation from the square-planar reactants to form transient three-coordinate Pd species initiates transmetallation and represents the rate-determining step of the process.
A novel bis(pyridyl-functionalized 1,2,3-triazol-5-ylidene)-palladium(II) complex [Pd(Py-tzNHC)2](2+) catalyses the copper-, amine-, phosphine-, and additive-free aerobic Sonogashira alkynylation of (hetero)aryl bromides in water as the only reaction solvent. The catalysis proceeds along two connected Pd-cycles with homogeneous bis-carbene Pd(0) and Pd(II) species, as demonstrated by electrospray ionization mass spectrometry.
The cationic palladium(II) complex 1 of pyridylmesoionic carbene ligand catalyzes Markovnikov-selective intermolecular hydroamination between anilines and terminal alkynes into the corresponding imines. The reaction proceeds at room temperature, in the absence of additives, with exquisite selectivity and diverse functional group tolerance. The key intrinsic feature of the catalyst is the pyridine wingtip confined to the proximity of the alkynophilic metal active site, which mimics the function of enzymelike architectures by assisting entropically favored proton transfers.
A robust, selective,
and highly efficient method for the preparation
of 1,3,4-triaryl 1,2,3-triazolium salts has been developed. It features
arylation of a click triazole with a diaryliodonium salt in the presence
of a copper catalyst under neat conditions. The presence of pyridine
functionality is tolerated, enabling the first access to key precursors
of pyridyl-mesoionic carbene ligands. The method has been integrated
into a one-pot protocol with terminal alkyne, sodium azide, and diaryliodonium
salt as starting compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.