MP, CvME and FME, but not the acidified clathrin-mediated pathway, lead to effective gene silencing by PEI/siRNA polyplexes. Lipoplexes, in contrast, deliver siRNA primarily by direct fusion of the liposomal and cellular membranes. These results provide a new understanding of the mechanisms of siRNA delivery materials in HeLa cells and may aid in design of more effective RNAi strategies.
Viral and non-viral gene delivery vectors are in development for human gene therapy, but both exhibit disadvantages such as inadequate efficiency, lack of cell-specific targeting or safety concerns. We have recently reported the design of hybrid delivery vectors combining retrovirus-like particles with synthetic polymers or lipids that are efficient, provide sustained gene expression and are more stable compared to native retroviruses. To guide further development of this promising class of gene delivery vectors, we have investigated their mechanisms of intracellular trafficking. Moloney murine leukemia virus-like particles (M-VLPs) were complexed with chitosan (Chi) or liposomes (Lip) comprising DOTAP, DOPE and cholesterol to form the hybrid vectors (Chi/M-VLPs and Lip/M-VLPs, respectively). Transfection efficiency and cellular internalization of the vectors were quantified in the presence of a panel of inhibitors of various endocytic pathways. Intracellular transport and trafficking kinetics of the hybrid vectors were dependent on the synthetic component and used a combination of clathrin- and caveolar-dependent endocytosis and macropinocytosis. Chi/M-VLPs were slower to transfect compared to Lip/M-VLPs due to the delayed detachment of the synthetic component. The synthetic component of hybrid gene delivery vectors plays a significant role in their cellular interactions and processing and is a key parameter for the design of more efficient gene delivery vehicles.
Design of safe and effective synthetic nucleic acid delivery vectors such as polycation/DNA or polycation/siRNA complexes (polyplexes) will be facilitated by quantitative understanding of the mechanisms by which such materials escort cargo from the cell surface to the nucleus. In particular, the mechanisms of cellular internalization by various endocytosis pathways and subsequent endocytic vesicle trafficking have been shown to strongly affect nucleic acid delivery efficiency. Fluorescence microscopy and subcellular fractionation methods are commonly employed to follow intracellular trafficking of biomolecules and nanoparticulate delivery systems such as polyplexes. However, it is difficult to obtain quantitative data from microscopy and subcellular fractionation is experimentally difficult and low throughput. We have developed a method for quantifying the transport of polyplexes through important endocytic vesicles. The method is based on polymerization of 3,3'-diaminobenzidine by endocytosed horseradish peroxidase, causing an increase in the vesicle density, resistance to being solubilized by detergent and quenching of fluorophores within the vesicles, which makes them easy to separate and quantify. Using this method in HeLa cells, we have observed polyethylenimine/siRNA polyplexes initially appearing in early endosomes and rapidly moving to other compartments within 30min post-transfection. At the same time, we observed the kinetics of accumulation of the polyplexes in lysosomes at a similar rate. The results from the new method are consistent with similar measurements by confocal fluorescence microscopy and subcellular fractionation of endocytic vesicles on a Percoll gradient. The relative ease of this new method will aid investigation of gene delivery mechanisms by providing the means to rapidly quantify endocytic trafficking of polyplexes and other vectors.
Introduction: Lipid nanoparticles (LNPs) are one of the most clinically advanced candidates for delivering nucleic acids to target cell populations, such as hepatocytes. Once LNPs are endocytosed, they must release their nucleic acid cargo into the cell cytoplasm. For delivering messenger RNA (mRNA), delivery into the cytosol is sufficient; however, for delivering DNA, there is an added diffusional barrier needed to facilitate nuclear uptake for transcription and therapeutic effect. background: Lipid nanoparticles (LNPs) are one of the most clinically advanced candidates for delivering nucleic acids to target cell populations, such as hepatocytes. Once LNPs are endocytosed, they must release their nucleic acid cargo into the cell cytoplasm. For delivering mRNA, delivery into the cytosol is sufficient however for delivering DNA there is an added diffusional barrier needed to facilitate nuclear uptake for transcription and therapeutic effect. Method: Here, we use fluorescence microscopy to investigate the intracellular fate of different LNP formulations to determine the kinetics of localization to endosomes and lysosomes. LNPs used in the studies were prepared via self-assembly using a NanoAssemblr for microfluidic mixing. As the content of polyethylene glycol (PEG) within the LNP formulation influences cellular uptake by hepatocyte cells, the content and hydrocarbon chain length within the formulation were assessed for their impact on intracellular trafficking. Standard LNPs were then formed using three commercially available ionizable lipids, Dlin-MC3-DMA (MC3), Dlin-KC2-DMA (KC2), and SS-OP. Plasmid DNA (pDNA) and mRNA were used, more specifically with a mixture of Cyanine 3 (Cy3)-labeled and green fluorescence protein (GFP) producing plasmid DNA (pDNA) as well as Cy5-labeled GFP producing mRNA. After formulation, LNPs were characterized for the encapsulation efficiency of the nucleic acid, hydrodynamic diameter, polydispersity, and zeta potential. All standard LNPs were ~100 nm in diameter and had neutral surface charge. All LNPs resulted in encapsulation efficiency greater than 70%. Confocal fluorescence microscopy was used for the intracellular trafficking studies, where LNPs were incubated with HuH-7 hepatocyte cells at times ranging from 0-48 h. The cells were antibody-stained for subcellular components, including nuclei, endosomes, and lysosomes. objective: The objective of this study was to identify the kinetics of intracellular trafficking and nucleic acid release from lipid nanoparticles containing different lipid compositions in hepatocyte cells. Result: Analysis was performed to quantify localization of pDNA to the endosomes and lysosomes. LNPs with 1.5 mol% PEG and a hydrocarbon chain C14 resulted in optimal endosomal escape and GFP production. Results from this study demonstrate that a higher percentage of C14 PEG leads to smaller LNPs with limited available phospholipid binding area for ApoE, resulting in decreased cellular uptake. We observed differences in the localization kinetics depending on the LNP formulation type for SS-OP, KC2, and MC3 ionizable lipids. The results also demonstrate the technique across different nucleic acid types, where mRNA resulted in more rapid and uniform GFP production compared to pDNA delivery. CONCLUSION: Here, we demonstrated the ability to track uptake and the sub-cellular fate of LNPs containing pDNA and mRNA, enabling improved screening prior to in vivo studies which would aid in formulation optimization. method: Here, we use fluorescence microscopy to investigate intracellular fate of different LNP formulations to determine the kinetics of localization to endosomes and lysosomes. LNPs used in the studies were prepared via self-assembly using a NanoAssemblr for microfluidic mixing. As the content of polyethylene glycol (PEG) within the LNP formulation influences cellular uptake by hepatocyte cells, the content and hydrocarbon chain length within the formulation were assessed for their impact on intracellular trafficking. Standard LNPs were then formed using three commercially available ionizable lipids, Dlin-MC3-DMA (MC3), Dlin-KC2-DMA (KC2), and SS-OP. Plasmid DNA (pDNA) and messenger RNA (mRNA) were used, more specifically with a mixture of Cyanine 3 (Cy3)-labeled and green fluorescence protein (GFP) producing plasmid DNA (pDNA) as well as Cy5-labeled GFP producing mRNA. After formulation, LNPs were characterized for the encapsulation efficiency of the nucleic acid, hydrodynamic diameter, polydispersity, and zeta potential. result: All standard LNPs were ~100 nm in diameter and neutral surface charge. All LNPs resulted in encapsulation efficiency greater than 70%. Confocal fluorescence microscopy was used for the intracellular trafficking studies, where LNPs were incubated with HuH-7 cells at times ranging from 0-48 h. The cells were antibody-stained for subcellular components, including nuclei, endosomes, and lysosomes. Analysis was performed to quantify localization of pDNA to the endosomes and lysosomes. LNPs with 1.5 mol% PEG and a hydrocarbon chain C14 resulted in endosomal escape and GFP production. We observed differences in the localization kinetics depending on LNP formulation type. conclusion: Here we demonstrated the ability to track uptake and sub-cellular fate of LNPs containing pDNA and mRNA, enabling improved screening prior to in vivo studies which would aid in formulation optimization. other: N/A
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.