Today, hydrogen production plays an important part in the industry due to the increasing use of hydrogen in significant domains, such as chemistry, transportation, or energy. In this paper, we aim to design a numerical control solution based on the thermodynamic analysis of the pyrolysis reactions for hydrogen production and to present novel research developments that highlight industrial applications. Beginning with the evaluation of the technological aspects for the pyrolysis chemical process, the paper studies the thermodynamic evaluation of the system equilibrium for the pyrolysis reactions set, to recommend an appropriate automatic control solution for hydrogen pyrolysis installations. The numerical control architecture is organized on two levels, a control level dedicated to key technological parameters, and a supervisory decision level for optimizing the conversion performances of the pyrolysis process. The data employed for modelling, identification, control, and optimization tasks, were obtained from an experimental platform. The scientific results can be implemented on dedicated equipment, to achieve an optimal exploitation of the industrial pyrolysis process.
This paper presents dynamic models associated to an experimental Diesel engine platform. Stability, controllability and observability analysis of the models have been performed. While the impact on human's health of NOx emissions is addressed, a state-feedback control procedure is presented in order to control the air flow inside the intake manifold to the cylinders and the pressure inside the combustion chamber of the experimental Diesel engine. The proposed solution of optimal control of the combustion regime brings important improvements of the Diesel engine: NOx reduction and fuel saving.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.