Modern imaging methods provide unprecedented insights into brain structure, perfusion, metabolism, and neurochemistry, both during and between migraine attacks. Neuroimaging investigations conducted in recent decades bring us closer to uncovering migraine as a multifaceted, primarily central nervous system disorder. Three main categories of structural and functional brain changes are described in this review, corresponding to the migrainous aura, ictal headache, and interictal states. (Headache 2013;53:46-66)
Matrix metalloproteinases (MMPs) constitute a family of zinc-dependent endopeptidases that mediate extracellular matrix turnover and associated processes, such as cell survival, growth, and differentiation. This paper discusses important functions of MMP in the normal and injured nervous system, focusing on the role played by these proteases in neurological pain syndromes, most prominently in neuropathic pain and migraine headaches. In the past decade, metalloproteinases emerged as key modulators of neuropathic pain, with MMP-9 acting as an initiator of the neuropathic cascade. Increased MMP activity was detected in migraine patients, independent of aura, in tight association with metabolic derangements. The therapeutic implications of MMP inhibition are considered in the context of neurogenic pain regulation.
Immunophilins are receptors for immunosuppressive drugs like cyclosporin A, FK506, rapamycin and their non- immunosuppressive analogs, which are collectively referred to as "immunophilin ligands" (IPL). Cyclosporin A binds to a class of IP called cyclophilins, whereas the receptors for FK506 and rapamycin belong to the family of FK506- binding proteins (FKBP). The latter are designated according to their molecular weight: FKBP12, 25, 52 etc. FKBP levels in the rat brain are up to 50 times higher than in the immune system. FKBP12 is associated with IP3 and ryanodine receptors present on the endoplasmic reticulum and plays a role in stabilizing calcium release. It has also been proposed to be a modulator of the TGFbeta receptor activity. Crush injury of facial or sciatic nerves in rat leads to markedly increased FKBP12 levels in the respective nerve nuclei and this increase is related to nerve regeneration. Cyclophilin A protects cells from death following expression of mutant Cu/ Zn superoxide dismutase, which is associated with familial amyotrophic lateral sclerosis. Our recent studies show that FKBP12 and FKBP52 are expressed in the human nervous system, especially in the substantia nigra- deep gray matter axis. In neurodegenerative diseases, FKBP12 levels increase in neurons situated in areas of pathology. This IP colocalizes with synaptophysin and alpha- synuclein, suggesting that it may become a novel marker of pathology. Immunophilins participate in axonal transport, synaptic vesicle assembly and may play a role in neuroprotection against abnormal protein aggregation, suggesting a potential avenue of therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.