Highlights d High-resolution cryo-EM structure of a native axonemal doublet microtubule d Atomic model for the 48-nm repeat structure includes 38 proteins d Coherent register between different periodicities via interconnected networks d Insights into diverse MIP functions and roles in ciliopathies
Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, reduced fertility, and randomization of the left/right body axis. It is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious axonemal defect for pathogenic variants using whole exome capture, next generation sequencing, and bioinformatic analysis assuming an autosomal recessive trait. We identified one subject with an apparently homozygous nonsense variant [(c.1762C>T), p.(Arg588*)] in the uncharacterized CFAP57 gene. Interestingly, the variant results in the skipping of exon 11 (58 amino acids), which may be due to disruption of an exonic splicing enhancer. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Nasal cells from the PCD patient express a shorter, mutant version of CFAP57 and the protein is not incorporated into the axoneme. The missing 58 amino acids include portions of WD repeats that may be important for loading onto the intraflagellar transport (IFT) complexes for transport or docking onto the axoneme. A reduced beat frequency and an alteration in ciliary waveform was observed. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs) recapitulates these findings. Phylogenetic analysis showed that CFAP57 is highly conserved in organisms that assemble motile cilia. CFAP57 is allelic with the BOP2/IDA8/ FAP57 gene identified previously in Chlamydomonas reinhardtii. Two independent, insertional fap57 Chlamydomonas mutant strains show reduced swimming velocity and altered a1111111111 a1111111111 a1111111111 a1111111111 a1111111111
word count: 247 Text word count, without methods: 3856 Abstract (247/ 250 words)Primary ciliary dyskinesia (PCD) is characterized by chronic airway disease, male infertility, and randomization of the left/right body axis, and is caused by defects of motile cilia and sperm flagella. We screened a cohort of affected individuals that lack an obvious TEM structural phenotype for pathogenic variants using whole exome capture and next generation sequencing. The population sampling probability (PSAP) algorithm identified one subject with a homozygous nonsense variant [(c.1762C>T) p.(Arg588*) exon 11] in the uncharacterized CFAP57 gene. In normal human nasal epithelial cells, CFAP57 localizes throughout the ciliary axoneme. Analysis of cells from the PCD patient shows a loss of CFAP57, reduced beat frequency, and an alteration in the ciliary waveform. Knockdown of CFAP57 in human tracheobronchial epithelial cells (hTECs)recapitulates these findings. Phylogenetic analysis showed that CFAP57 is conserved in organisms that assemble motile cilia, and CFAP57 is allelic with the BOP2 gene identified previously in Chlamydomonas. Two independent, insertional fap57Chlamydomonas mutant strains show reduced swimming velocity and altered waveforms. Tandem mass spectroscopy showed that CFAP57 is missing, and the "g" inner dyneins (DHC7 and DHC3) and the "d" inner dynein (DHC2) are reduced. Our data demonstrate that the FAP57 protein is required for the asymmetric assembly of inner dyneins on only a subset of the microtubule doublets, and this asymmetry is essential for the generation of an effective axonemal waveform. Together, our data identifies mutations in CFAP57 as a cause of PCD with a specific defect in the inner dynein arm assembly process. Significance (119/120 words)Motile cilia are found throughout eukaryotic organisms and performs essential functions.Primary ciliary dyskinesia (PCD) is a rare disease that affects the function of motile cilia.By applying a novel population sampling probability algorithm (PSAP) that uses large population sequencing databases and pathogenicity prediction algorithms, we identified a variant in an uncharacterized gene, CFAP57. This is the first reported example of PCD caused by a mutation that affects only a subset of the inner dynein arms, which are needed to generate the waveform. CFAP57 identifies an address for specific dynein arms. These findings demonstrate the effectiveness of the PSAP algorithm, expand our understanding of the positioning of dynein arms, and identify mutations in CFAP57 as a cause of PCD.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.