In patients with dysphagia, it has been a practice to thicken fluid food to prevent aspiration—the transport of a bolus into the trachea instead of the oesophagus. In these patients, aspiration is a risk behaviour and is closely related to pneumonia (caused by the aspiration of oral bacteria into the lungs). Since excessive thickening of fluids can cause adverse effects, such as lowering the palatability of food, subsequent reduction of liquid intake, dehydration and malnutrition, identifying the optimum thickening level is vital. Thickening might not only increase fluid viscosity, but could also modify its cohesiveness, which is another key factor affecting aspiration. Even though cohesiveness is more of a concept than a well-defined measurable parameter, this property describes the degree of coherency provided by the internal structure of a material against its fractional breakup. In fluids, this concept is less explored than in solids, powders and granules, and during the last decade few scientists have tackled this topic. Although the role of cohesiveness in the swallowing of heterogeneous solid foods is briefly overviewed, the aim of the present paper is to introduce the concept of cohesiveness for a relatively homogeneous fluid bolus and its effect on swallowing. Cohesiveness is highly correlated with the extensibility and yield stress of the fluid, suggesting that a high cohesiveness could have an important role in preventing aspiration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.