In this paper we study the singularities of holomorphic functions of bicomplex variables introduced by G. B. Price (An Introduction to Multicomplex Spaces and Functions, Dekker, New York, 1991). In particular, we use computational algebra techniques to show that even in the case of one bicomplex variable, there cannot be compact singularities. The same techniques allow us to prove a duality theorem for such functions.
In this paper we study the Cauchy-Kowalewski extension of real analytic functions satisfying a system of differential equations connected to bicomplex analysis, and we use this extension to study the product in the space of bicomplex holomorphic functions. We also show how these ideas can be used to define a Fourier transform for bicomplex holomorphic functions
In this paper, we consider bicomplex holomorphic functions of several variables in BC n . We use the sheaf of these functions to define and study hyperfunctions as their relative 3n-cohomology classes. We show that such hyperfunctions are supported by the Euclidean space R n within the bicomplex space BC n , and we construct an abstract Dolbeault complex that provides a fine resolution for the sheaves of bicomplex holomorphic functions. As a corollary, we show how that the bicomplex hyperfunctions can be represented as classes of differential forms of degree 3n − 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.