SUMMARY Objectives The standard concurrent radiotherapy and chemotherapy regimens for patients with oropharyngeal cancer are highly toxic. Human papillomavirus (HPV)-associated oropharyngeal squamous cell carcinoma (OPSCC) has recently emerged as a distinct biological and clinical entity with improved response to treatment and prognosis. A tailored therapeutic approach is needed to optimize patient care. The aim of our study was to investigate the impact of HPV and smoking status on early toxicities (primarily mucositis) associated with concurrent chemotherapy and radiotherapy in patients with OPSCC. Materials and methods We retrospectively evaluated 72 consecutive patients with OPSCC and known HPV status treated with concurrent radiotherapy and chemotherapy at our institution. Treatment-related toxicities were stratified by smoking and HPV status and compared using univariate and multivariate logistic regression. Results HPV-positive patients had a 6.86-fold increase in the risk of having severe, grade 3–4 mucositis. This effect was preserved after adjusting for patient smoking status, nodal stage, radiotherapy technique and radiotherapy maximum dose. Additionally, HPV status had significant effect on the objective weight loss during treatment and at three months after treatment. Consistently, non-smokers had a significant 2.70-fold increase in the risk of developing severe mucositis. Conclusion Risk factors for OPSCC modify the incidence of treatment-related early toxicities, with HPV-positive and non-smoking status correlating with increased risk of high grade mucositis and associated outcomes. Retrospective single-institution studies need to be interpreted cautiously. However, this finding is important to consider when designing therapeutic strategies for HPV-positive patients and merits further investigation in prospective clinical trials.
BackgroundSolid tumors residing in tissues and organs leave footprints in circulation through circulating tumor cells (CTCs) and circulating tumor DNAs (ctDNA). Characterization of the ctDNA portraits and comparison with tumor DNA mutational portraits may reveal clinically actionable information on solid tumors that is traditionally achieved through more invasive approaches.MethodsWe isolated ctDNAs from plasma of patients of 103 lung cancer and 74 other solid tumors of different tissue origins. Deep sequencing using the Guardant360 test was performed to identify mutations in 73 clinically actionable genes, and the results were associated with clinical characteristics of the patient. The mutation profiles of 37 lung cancer cases with paired ctDNA and tumor genomic DNA sequencing were used to evaluate clonal representation of tumor in circulation. Five lung cancer cases with longitudinal ctDNA sampling were monitored for cancer progression or response to treatments.ResultsMutations in TP53, EGFR, and KRAS genes are most prevalent in our cohort. Mutation rates of ctDNA are similar in early (I and II) and late stage (III and IV) cancers. Mutation in DNA repair genes BRCA1, BRCA2, and ATM are found in 18.1% (32/177) of cases. Patients with higher mutation rates had significantly higher mortality rates. Lung cancer of never smokers exhibited significantly higher ctDNA mutation rates as well as higher EGFR and ERBB2 mutations than ever smokers. Comparative analysis of ctDNA and tumor DNA mutation data from the same patients showed that key driver mutations could be detected in plasma even when they were present at a minor clonal population in the tumor. Mutations of key genes found in the tumor tissue could remain in circulation even after frontline radiotherapy and chemotherapy suggesting these mutations represented resistance mechanisms. Longitudinal sampling of five lung cancer cases showed distinct changes in ctDNA mutation portraits that are consistent with cancer progression or response to EGFR drug treatment.ConclusionsThis study demonstrates that ctDNA mutation rates in the key tumor-associated genes are clinical parameters relevant to smoking status and mortality. Mutations in ctDNA may serve as an early detection tool for cancer. This study quantitatively confirms the hypothesis that ctDNAs in circulation is the result of dissemination of aggressive tumor clones and survival of resistant clones. This study supports the use of ctDNA profiling as a less-invasive approach to monitor cancer progression and selection of appropriate drugs during cancer evolution.Electronic supplementary materialThe online version of this article (doi:10.1186/s13045-017-0468-1) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.