Despite major progress in Robotics and AI, robots are still basically "zombies" repeatedly achieving actions and tasks without understanding what they are doing. Deep-Learning AI programs classify tremendous amounts of data without grasping the meaning of their inputs or outputs. We still lack a genuine theory of the underlying principles and methods that would enable robots to understand their environment, to be cognizant of what they do, to take appropriate and timely initiatives, to learn from their own experience and to show that they know that they have learned and how. The rationale of this paper is that the understanding of its environment by an agent (the agent itself and its effects on the environment included) requires its self-awareness, which actually is itself emerging as a result of this understanding and the distinction that the agent is capable to make between its own mind-body and its environment. The paper develops along five issues: agent perception and interaction with the environment; learning actions; agent interaction with other agents-specifically humans; decision-making; and the cognitive architecture integrating these capacities.
Localisation, tracking and recognition of objects and humans are basic tasks that are of high value in applications of ambient intelligence. Sensing floors were introduced to address these tasks in a non-intrusive way. To recognize the humans moving on the floor, they are usually first localized, and then a set of gait features are extracted (stride length, cadence, pressure profile over a footstep). However, recognition generally fails when several people stand or walk together, preventing successful tracking. This paper presents a detection, tracking and recognition technique which uses objects' weight. It continues working even when tracking individual persons becomes impossible. Inspired by computer vision, this technique processes the floor pressure-image by segmenting the blobs containing objects, tracking them, and recognizing their contents through a mix of inference and combinatorial search. The result lists the probabilities of assignments of known objects to observed blobs. The concept was successfully evaluated in daily life activity scenarii, involving multi-object tracking and recognition on low resolution sensors, crossing of user trajectories, and weight ambiguity. This technique can be used to provide a probabilistic input for multi-modal object tracking and recognition systems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.