This paper demonstrates the application of two soft computing approaches namely artificial neural network (ANN) and neural-fuzzy system to forecast the unevenness of ring spun yarns. The cotton fiber properties measured by advanced fiber information system (AFIS) and yarn count have been used as inputs. The prediction accuracy of the ANN and neuralfuzzy models was compared with that of linear regression model. It was found that the prediction performance was very good for all the three models although ANN and neural-fuzzy models seem to have some edge over the linear regression model. The linguistic rules developed by the neural-fuzzy system unearth the role of input variables on the yarn unevenness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.