Parasitic diseases cause significant economic losses in swine, including free-range swine farms, the number of which in Romania has increased in the last decades. The current study aimed to identify the parasitic profile of swine raised on two free-range (low-input) farms from Transylvania. Nine hundred sixty samples collected from weaners, fatteners, and sows were investigated by flotation, centrifugal sedimentation, modified Ziehl-Neelsen stained fecal smear, modified Blagg technique, and oocyst/egg cultures. The number of oocysts (OPG), cysts (CPG), and eggs (EPG) were counted per gram of fecal matter. The examination revealed parasitic infections with Balantidium coli, Eimeria spp., Ascaris suum, Trichuris suis, Oesophagostomum spp., Strongyloides ransomi and Cryptosporidium spp. Prevalence (P) and the mean intensity (MI) of the infections varied according to age, swine category, farm, and season. The overall prevalence in both free-range farms according to the age category was 63.2%—Eimeria spp., 70.31%—B. coli, 9.38%—Oesophagostomum spp., 3.75% S. ransomi, and 18.12% Cryptosporidium spp. in weaners. In fatteners Eimeria spp. revealed a prevalence of 50.93%, B. coli—72.5 %, A. suum—63.13%, T. suis—39.06%, and in sows Eimeria spp.—39.06%, B. coli—62.19%, A. suum—34.06%, Oesophagostomum spp.—27.19%, S. ransomi—1.56% and Cryptosporidium spp.—9.38%. The study revealed statistically significant (p < 0.05) differences between age groups, seasons, and farms for all diagnosed parasites. Further research is required to better understand the epidemiology of these infections in swine from Transylvania.
Ascaris suum is present in traditionally managed indoor pig herds and in industrialized farms, especially in older fatteners and sows. The increasing resistance to common antihelminthic drugs redirected research towards alternative and traditional therapies, which also include medicinal plants. This study comparatively evaluated the in vitro antiparasitic effects of Allium sativum L., Artemisia absinthium L., Cucurbita pepo L., Coriandrum sativum L., Satureja hortensis L. and Calendula officinalis L. against A. suum egg hatching and larval development. A. suum eggs were sampled from randomized fecal specimens collected from traditionally raised swine. The egg suspension (ES, 12 × 103/mL) was divided into two controls (C) (1C—1 mL ES + 1 mL distilled water, 2C—five plates of 1 mL ES + 1 mL ethanol of 70%, 35%, 17.5%, 8.75%, and 4.375%, respectively) and six experimental groups, and placed in 3 mL cell plates. The experimental groups (EG, 1–6) included ES + each alcoholic plant extract (10%, 5%, 2.5%, 1.25%, 0.625%). Both C and EG were performed in quintuplicate. All variants were incubated at 27 °C for a total of 21 days. A. suum eggs were examined after 2, 14 (L1), and 21 (L2/L3) days of incubation. The efficacy of all tested plant extracts increased with concentration. Anti-embryogenic effects on A. suum eggs were expressed by all plants. A superior influence was observed in A. sativum L., A. absinthium L., C. pepo L. and S. hortensis L. extracts, at all concentrations tested. A. sativum L. and A. absinthium L. extracts showed the strongest antihelminthic activity, while C. sativum L. and C. officinalis L. were the weakest ascaricids. Future in-depth phytochemical studies are required to identify the compounds responsible for the anthelminthic properties of these plant species.
Parasitic diseases are responsible for substantial losses in reproduction and productivity in swine, creating a major impairment to efficient and profitable livestock management. The use of phytotherapeutic remedies has notably increased over the past decade due to their bioavailability, decreased toxicity, non-polluting nature, and to some extent due to their antiparasitic effect. The aim of this study was to evaluate the antiparasitic potential of Cucurbita pepo L. and Coriandrum sativum L. against protozoa and nematodes found in swine. The samples were collected from weaners, fatteners, and sows and examined via flotation (Willis and McMaster), active sedimentation, Ziehl-Neelsen staining as modified by Henricksen, a modified Blagg method, and eggs/oocyst culture. The parasite species detected were Ascaris suum, Trichuris suis, Oesophagostomum spp., Balantioides coli (syn. Balantidium coli), Eimeria spp., and Cryptosporidium spp., depending on age category. A dose of 500 mg/kg bw/day of C. pepo and 170 mg/kg bw/day of C. sativum powders, administered for ten consecutive days, demonstrated a pronounced anthelmintic (pumpkin) and antiprotozoal (coriander) effect against the aforementioned parasites. Future studies are required to ascertain the optimal dose that maximizes their antiparasitic effectiveness. The current study represents the first Romanian report on the in vivo antiparasitic activity of these two plants tested on digestive parasites in swine.
Coccidiosis in pigs seldom results in important economic losses. However, it can influence growth rates in weaners and it is an important hygiene indicator in swine farms. Certain herbs, along with their extracts, have been used over the course of history in traditional medicine. The aim of this study was to evaluate the in vitro anticoccidial effects of Allium sativum L. (garlic), Artemisia absinthium L. (wormwood), Coriandrum sativum L. (coriander), Cucurbita pepo L. (pumpkin), Satureja hortensis L. (summer savory), and Calendula officinalis L. (marigold) against Eimeria suis and Eimeria debliecki oocysts. The stock solution of oocysts (58% E. suis + 42% E. debliecki) was incubated for three days, before adding the tested solutions. The unsporulated Eimeria spp. oocysts were then placed in a 3 mL well plate and incubated for 96 h at 27 °C, in a suspension containing serial dilutions of alcoholic plant extracts (5%, 2.5%, 1.25%, 0.625%, and 0.312%). The percentage of sporulated and destroyed oocysts was recorded every 24 h for 96 h. All extracts had a good in vitro anticoccidial effect against oocysts of Eimeria spp. compared with the control groups. Oocyst sporulation was significantly (p = 0.05) inhibited by the 5% marigold extract (3.6% sporulated oocysts). The same extract had the highest lytic effect on oocysts (65.2% destroyed oocysts). Our results prove that the most effective alcoholic plant extract is the marigold extract, followed, in order of efficiency, by the wormwood, coriander, garlic, pumpkin, and summer savory extracts. This study represents a preliminary contribution for establishing a new generation of natural disinfectants aimed at destroying Eimeria oocysts in the context of swine contamination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.