We bring together two topics recently introduced in membrane computing, the much investigated spiking neural P systems (in short, SN P systems), inspired from the way the neurons communicate through spikes, and the dP systems (distributed P systems, with components which "read" strings from the environment and then cooperate in accepting their concatenation). The goal is to introduce SN dP systems, and to this aim we first introduce SN P systems with the possibility to input, at their request, spikes from the environment; this is done by so-called request rules. A preliminary investigation of the obtained SN dP systems (they can also be called automata) is carried out. As expected, request rules are useful, while the distribution in terms of dP systems can handle languages which cannot be generated by usual SN P systems. We always work with extended SN P systems; the non-extended case, as well as several other natural questions remain open.
We consider spiking neural P systems with rules allowed to introduce zero, one, or more spikes at the same time. The motivation comes both from constructing small universal systems and from generating strings; previous results from these areas are briefly recalled. Then, the computing power of the obtained systems is investigated, when considering them as number generating and as language generating devices. In the first case, a simpler proof of universality is obtained, while in the latter case we find characterizations of finite and recursively enumerable languages (without using any squeezing mechanism, as it was necessary in the case of standard rules). The relationships with regular languages are also investigated.
We consider here spiking neural P systems with a non-synchronized (i.e., asynchronous) use of rules: in any step, a neuron can apply or not apply its rules which are enabled by the number of spikes it contains (further spikes can come, thus changing the rules enabled in the next step). Because the time between two firings of the output neuron is now irrelevant, the result of a computation is the number of spikes sent out by the system, not the distance between certain spikes leaving the system. The additional non-determinism introduced in the functioning of the system by the nonsynchronization is proved not to decrease the computing power in the case of using extended rules (several spikes can be produced by a rule). That is, we obtain again the equivalence with Turing machines (interpreted as generators of sets of (vectors of) numbers). However, this problem remains open for the case of restricted spiking neural P systems, whose rules can only produce one spike. On the other hand we prove that asynchronous systems, with extended rules, and where each neuron is either bounded or unbounded, are not computationally complete. For these systems, the configuration reachability, membership (in terms of generated vectors), emptiness, infiniteness, and disjointness problems are shown to be decidable. However, containment and equivalence are undecidable. In short, an SN P system consists of a set of neurons placed in the nodes of a directed graph and sending signals (spikes, denoted in what follows by the symbol a) along the arcs of the graph (they are called synapses). Thus, the architecture is that of a tissue-like P system, with only one kind of object present in the cells (the reader is referred to [18] for an introduction to membrane computing and to [23] for the up-to-date information about this research area). The objects evolve by means of standard spiking rules, which are of the form E/a c → a; d, where E is a regular expression over {a} and c, d are natural numbers, c ≥ 1, d ≥ 0. The meaning is that a neuron containing k spikes such that a k ∈ L(E), k ≥ c, can consume c spikes and produce one spike, after a delay of d steps. This spike is sent to all neurons connected by an outgoing synapse from the neuron where the rule was applied. There also are forgetting rules, of the form a s → λ, with the meaning that s ≥ 1 spikes are removed, provided that the neuron contains exactly s spikes. Extended rules were considered in [4], [17]: these rules are of the form E/a c → a p ; d, with the meaning that when using the rule, c spikes are consumed and p spikes are produced. Because p can be 0 or greater than 0, we obtain a generalization of both standard spiking and forgetting rules. In this paper we consider extended spiking rules with restrictions on the type of the regular expressions used. In particular, we consider two types of rules. The first type are called bounded rules and are of the form a i /a c → a p ; d, where 1 ≤ c ≤ i, p ≥ 0, and d ≥ 0. We also consider unbounded rules of the form a i (a j) * /a c → a p ; d...
Abstract. In search for "realistic" bio-inspired computing models, we consider asynchronous spiking neural P systems, in the hope to get a class of computing devices with decidable properties. However, although the non-synchronization is known in general to decrease the computing power, in the case of using extended rules (several spikes can be produced by a rule) we obtain again the equivalence with Turing machines (interpreted as generators of sets of vectors of numbers). The problem remains open for the case of restricted spiking neural P systems, whose rules can only produce one spike. On the other hand, we prove that asynchronous spiking neural P systems, with a specific way of halting, using extended rules and where each neuron is either bounded or unbounded, are equivalent to partially blind counter machines and, therefore, have many decidable properties. Spiking Neural P Systems -An Informal PresentationIn the present paper we continue the investigation of spiking neural P systems (SN P systems, in short). A survey of results and the biological motivations for these systems can be found in [5] and [2]. In the meantime, two main research directions were particularly active in this area of membrane computing: looking for classes of systems with tractable (for instance, decidable) properties, and looking for the possibility of using SN P systems for efficiently solving computationally hard problems. Along the second research line are the investigations related to the possibility of simulating an SN P system by a Turing machine with a polynomial slowdown (preliminary results can be found in [3]) and those trying to improve the efficiency of SN P systems, e.g., by enhancing the parallelism of the system (see, for instance, [7]).In this paper we report several recent results concerning the first topic mentioned above -specifically, removing the synchronization (common in many membrane computing models), calling them asynchronous SN P systems. These
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.