Recently, B.-Y. Chen studied warped products which are CR-submanifolds in Kaehler manifolds and established general sharp inequalities for CR-warped products in Kaehler manifolds. Afterwards, I. Hasegawa and the present author obtained a sharp inequality for the squared norm of the second fundamental form (an extrinsic invariant) in terms of the warping function for contact CR-warped products isometrically immersed in Sasakian manifolds. In this paper, we improve the above inequality for contact CR-warped products in Sasakian space forms. Some applications are derived. A classification of contact CR-warped products in spheres, which satisfy the equality case, identically, is given. (2000). 53C40, 53C25.
Mathematics Subject Classifications
In this paper, we study the behaviour of submanifolds in statistical
manifolds of constant curvature. We investigate curvature properties of such
submanifolds. Some inequalities for submanifolds with any codimension and
hypersurfaces of statistical manifolds of constant curvature are also
established.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.