High temperature power electronics has become possible with the recent availability of silicon carbide devices. This material, as other wide-bandgap semiconductors, can operate at temperatures above 500°C, whereas silicon is limited to 150-200°C. Applications such as transportation or a deep oil and gas wells drilling can benefit. A few converters operating above 200°C have been demonstrated, but work is still ongoing to design and build a power system able to operate in harsh environment (high temperature and deep thermal cycling).
In the framework of the European I-Smart project, optimal 4H-SiC based diode geometries were developed for high temperature neutron detection. Irradiation tests were conducted with 14 MeV fast neutrons supplied by a deuteriumtritium neutron generator with an average neutron yield of 4.04 × 10 10 − 5.25 × 10 10 n/s at Neutron Laboratory of the Technical University of Dresden in Germany. In this paper, we interpret the first measurements and results with 4H-SiC detector irradiated with fast neutrons from room temperature up to 500 • C. These experiments are serving also the first simulation of the harsh environmental condition measurements in the tritium breeding blanket of the ITER fusion reactor, which is one of the most prominent planned location of high temperature neutron flux characterization studies in the near future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.