In cerebral palsy (CP) the basis for rehabilitation comes from neuroplasticity. One of the leading therapeutic approaches used in the management of CP is the NDT Bobath therapy and Vojta therapy consists in trying to program the ideal movement patterns for the age. The aim of our research was to analyze, from a functional point of view, the evolution of the biomechanical parameters characterizing the balance, in children with CP. The group of 12 subjects average age of 7 ± 3.28 years. The subject’s evaluation included a functional clinical evaluation by Berg pediatric scale and a biomechanical evaluation performed using the “Stabilometry footboard PoData 2.00” for evaluation the body weight distribution on the foot level. The rehabilitation program was developed based on two methods, NDT Bobath and Vojta. A 90-min physiotherapy session starts with a Vojta therapy activation, for 20 min. Between the two therapies there is a 10-min break, then the session continues with NDT Bobath exercises within the 3 physical exercises proposed for 60 min. 5 days per week, 6 months. The analysis of the data collected before and after the application of the rehabilitation program, regarding the using the Berg scale indicates a progress of 32.35%, (p = 0.0001 < 0.05) and the effect size is large. The evolution of the data that indicate the distribution of body weight at the level of the two lower limbs, at the two moments pre/post, evaluation. For left side a progress of 8.39%, (p = 0.027 < 0.05) but a small effect size of 0.86. For right side a progress of 10.36% (p = 0.027 < 0.05) and also a small effect size of 0.86. Analyzing the results, we find that there is a left-right rebalancing in most patients. The favorable results that were obtained by drawing up a physiotherapy program composed of the combination of the two Vojta and NDT Bobath methods are proof of the fact that both methods are based on the creation of a stimulating peripheral pressure, which, if maintained, generates an extended stereotyped motor response. A pattern of symmetrical muscle contraction is thus created and thus balance and postural control can be achieved. The left-right rebalancing, proven by the percentage distribution analysis of the weight at the lower segmental level, demonstrated that the body alignment approach through the Vojta method on the one hand and the inhibitory facilitating postures/exercises promoted by the NDT Bobath method, allows obtaining a symmetry.
Flat foot is a common pediatric foot deformity which involves subtalar flexibility; it can affect the plantar arch. This study analyzes the evolution of two parameters, i.e., plantar index arch and subtalar flexibility, before and after physiotherapy and orthoses interventions, and examines the correlation between these two parameters. Methods: The study included 30 participants (17 boys, 12 girls, average age 9.37 ± 1.42 years) with bilateral flat foot. We made two groups, each with 15 subjects. Assessments of the subtalar flexibility and plantar arch index used RSScan the platform, and were undertaken at two time points. Therapeutic interventions: Group 1—short foot exercises (SFE); Group 2—SFE and insoles. Statistical analyses included Student’s t-test, Cohen’s D coefficient, Pearson and Sperman correlation. Results: Group 1—subtalar flexibility decreased for the left and right feet by 28.6% and 15.9% respectively, indicating good evolution for the left foot. For both feet, a decrease of the plantar index arch was observed. Group 2—subtalar flexibility decreased for the right and left feet by 43.4% and 37.7% respectively, indicating a good evolution for the right foot. For both feet, a decrease of plantar index arch was observed. Between groups, subtalar flexibility evolved well for Group 2; this was attributed to mixt intervention, physical therapy and orthosis. For plantar arch index, differences were not significant between the two groups. We observed an inverse correlation between subtalar flexibility and plantar arch index. Conclusions: Improvement of plantar index arch in static and dynamic situations creates the premise of a good therapeutic intervention and increases foot balance and postural control. The parameter which showed the most beneficial influence was the evolution is subtalar flexibility.
The impact of demyelinization on muscle fiber changes and the type of changes in multiple sclerosis (MS) is very hard to estimate. One of the major problems of MS patients is muscle fatigue and decrease of muscle force in the range of 16–57%. The objective of this research work is to estimate various aspects of muscle changes at tibial muscle (mTA) level using a noninvasive method named as tensiomyography (TMG). TMG provides information about muscle functions in MS. This study includes 40 MS patients among which 18 are males (45%) and 22 are females (55%). They are divided in two subgroups: subgroup A and subgroup B. Subgroup A includes 20 MS patients without clinical decelable gait disorders and subgroup B includes 20 MS patients with clinical decelable gait disorders. Also, we have a control group that includes 20 healthy people with the same average age. Average age is 38.15 ± 11.19 y for MS patients and 39.34 ± 10.57 for healthy people. Evaluation measures include ADL score and EDSS scale. The ADL score is 0 for patients from subgroup A and 1 for patients from subgroup B. The EDSS score is 1 for subgroup A and 2.5 for subgroup B. This study confirms the importance of TMG based evaluation of muscle changes in MS patients. This smart healthcare system is also used for prediction of the muscle changes and muscle imbalance. Contraction time (Tc) recordings are used to detect the muscle fatigue which is a specific symptom of MS. The value of Tc for subgroup A is 45.8 ms and subgroup B is 61.37 ms for right side. Analysis of these two parameters such as Dm and Tc could define the muscle behaviour and help provide early information about the possibility of developing gait disorders. This smart TMG system analyses the muscle tone in the best possible way to predict the onset of any diseases which is an integral part of the smart healthcare system.
Background: Evaluation of plantar pressure in stroke patients is a parameter that could be used for monitoring and comparing how the timing of starting a rehabilitation program effects patient improvement. Methods: We performed the following clinical and functional evaluations: initial moment (T1), intermediate (T2), and final evaluation at one year (T3). At T1 we studied 100 stroke patients in two groups, A and B (each 50 patients). The first group, A, started rehabilitation in the first three months after having a stroke, and group B started after three months from the time of stroke. Due to the impediments observed during rehabilitation, we made biomechanic evaluation for two lots, I and II (each 25 patients). Assessment of the patient was carried out by clinical (neurologic examination), functional (using the Tinetti Functional Gait Assessment Test for classifying the gait), and biomechanical evaluation (maximal plantar pressure (Pmax), contact area (CA), and pressure distribution (COP)). Results: The Tinetti scale for gait had the following scores: for group A, from 1.34 at the initial moment (T1) to 10.64 at final evaluation (T3), and for group B, 3.08 at initial moment (T1) to 9 at final evaluation (T3). Distribution of COP in the left hemiparesis was uneven at T1 but evolved after rehabilitation. The right hemiparesis had uniform COP distribution even at T1, explained by motor dominance on the right side. CA and Pmax for lot I increased more than 100%, meaning that there is a possibility for favorable improvement if the patients start the rehabilitation program in the first three months after stroke. For lot II, increases of the parameters were less than lot I. Discussions: The recovery potential is higher for patients with right hemiparesis. Biomechanic evaluation showed diversity regarding compensatory mechanisms for the paretic and nonparetic lower limb. Conclusions: CA and Pmax are relevant assessments for evaluating the effects on timing of starting a rehabilitation program after a stroke.
Background: Understanding the brain function and how it coordinate the motor activity, means to have a map of brain using a lot of modern technologies which can give us information about the role and functions of different brain areas. Objective: The aim of our study is to explore the brain activity using electroencephalography (EEG) and make the evaluation of differences in brain functions depend on specific sport activity. Methods: We make the study on two lots of athletes from judo (12subjects) and volleyball (11subjects), yrs. 22. All of them have a great sport activity experience and the anthropometric characteristics are similar. For recording the brain activity we use Nihon EEG product. The protocol of the research includes recording of brain activity during muscle contraction and relax of hand flexors. The parameters that we follow up are alpha1, alpha2 and theta waves. The information have been analysed using statistic methods and Pearson coefficient. Judo players present a little bit increase values of theta waves and we observe also a correlation between alpha waves for dominant hemisphere. For the second lot the the values of theta waves are highest. Conclusions: Analyse the behaviour of EEG waves could help the trainer and staff for approach the training results in term of build the brain and motor pattern. This is the result of professional approach of training based on neurophysiologic assessment using the brain mapping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.