After more than 20 years of steady progress, lithium-ion batteries still exhibit modest energy capacities that seem to have reached their asymptotic values with the present combination of graphite at the anode and insertion oxide or phosphate materials at the cathode. New applications, particularly for all-electric vehicles are pushing the development of electrode materials with higher Li storage capabilities, for both electrodes.Silicon, which exhibits the highest known Li-alloying capacity is one of the most promising anode materials.However, Li alloying with Si is accompanied by a large volume change which induces cracking and rapid pulverization of Si-based anodes. Significant improvements in the anode's lifetime as well as chargedischarge rates have been obtained over the past few years by employing Si nanostructures, particularly nanowires. In this paper, we present the main synthesis methods for Si nanowires as well as the alloying properties of Li with Si and review how the use of Si-based nanowires has evolved, thanks to sophisticated material/structure combinations, including core-shell nanowires, composites as well as hollowed nanotube-like approaches.
Silicon exhibits the largest known capacity for Li insertion in anodes of Li‐ion batteries. However, because of large volume expansion/phase changes upon alloying, Si becomes powder‐like after a few charge‐discharge cycles. Various approaches have been explored in the past to circumvent this problem, including the use of nanomaterials, particularly Si nanowires. However, even though nanowires resist cracking very well, anodes based on Si nanowires still see their original capacity fade away upon cycling, because of wire detachment from the substrate, due to the stress generated at their roots upon alloying with Li. Here, we present a silicon nanowire growth strategy yielding highly interconnected specimens, which prevents them from being individually detached from the substrate. We report a ∼100% charge retention after 40 cycles at C/2 rate, without charging voltage limitation. We also show that our anodes can be cycled at 8C rates without damage and we grow nanowires with a density of 1.2 mg/cm2, yielding anodes delivering a 4.2 mAh/cm2 charge density. Finally, we point out that a better understanding of the interactions of silicon with electrolytes is needed if the field is to progress in the future.
Hollow carbon nanospheres/silicon/alumina (CNS/Si/Al2O3) core-shell films obtained by the deposition of Si and Al2O3 on hollow CNS interconnected films are used as the anode materials for lithium-ion batteries. The hollow CNS film acts as a three dimensional conductive substrate and provides void space for silicon volume expansion during electrochemical cycling. The Al2O3 thin layer is beneficial to the reduction of solid-electrolyte interphase (SEI) formation. Moreover, as-designed structure holds the robust surface-to-surface contact between Si and CNSs, which facilitates the fast electron transport. As a consequence, the electrode exhibits high specific capacity and remarkable capacity retention simultaneously: 1560 mA h g−1 after 100 cycles at a current density of 1 A g−1 with the capacity retention of 85% and an average decay rate of 0.16% per cycle. The superior battery properties are further confirmed by cyclic voltammetry (CV) and impedance measurement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.