Recent trends to employ high-index dielectric particles in nanophotonics are motivated by their reduced dissipative losses and large resonant enhancement of nonlinear effects at the nanoscale. Because silicon is a centrosymmetric material, the studies of nonlinear optical properties of silicon nanoparticles have been targeting primarily the third-harmonic generation effects. Here we demonstrate, both experimentally and theoretically, that resonantly excited nanocrystalline silicon nanoparticles fabricated by an optimized laser printing technique can exhibit strong second-harmonic generation (SHG) effects. We attribute an unexpectedly high yield of the nonlinear conversion to a nanocrystalline structure of nanoparticles supporting the Mie resonances. The demonstrated efficient SHG at green light from a single silicon nanoparticle is 2 orders of magnitude higher than that from unstructured silicon films. This efficiency is significantly higher than that of many plasmonic nanostructures and small silicon nanoparticles in the visible range, and it can be useful for a design of nonlinear nanoantennas and silicon-based integrated light sources.
We propose a novel photothermal approach based on resonant dielectric nanoparticles, which possess imaginary part of permittivity significantly smaller as compared to metal ones. We show both experimentally and theoretically that a spherical silicon nanoparticle with a magnetic quadrupolar Mie resonance converts light to heat up to 4 times more effectively than similar spherical gold nanoparticle at the same heating conditions. We observe photoinduced temperature raise up to 900 K with the silicon nanoparticle on a glass substrate at moderate intensities (<2 mW/μm) and typical laser wavelength (633 nm). The advantage of using crystalline silicon is the simplicity of local temperature control by means of Raman spectroscopy working in a broad range of temperatures, that is, up to the melting point of silicon (1690 K) with submicrometer spatial resolution. Our CMOS-compatible heater-thermometer nanoplatform paves the way to novel nonplasmonic photothermal applications, extending the temperature range and simplifying the thermoimaging procedure.
Soda lime glasses polarized either with an open or a blocking anode have been characterized by IR reflectance spectroscopy and a combined analysis of second harmonic generation and Raman imaging. The experimental results clearly show that the electrode nature influences strongly (i) the thickness of the space charge layer, (ii) the χ (2) efficiency, and (iii) the structural rearrangements. Besides, using theoretical models accounting for charge carriers' mobilities, the respective influence of two distinct compensation mechanisms, that is an injection of positive charges (H 3 O + /H + ions) or a drift of oxygen ions, have been confirmed.
Metasurfaces based on resonant subwavelength photonic structures enable novel ways of wavefront control and light focusing, underpinning a new generation of flat-optics devices. Recently emerged all-dielectric metasurfaces exhibit high-quality resonances underpinned by the physics of bound states in the continuum that drives many interesting concepts in photonics. Here we suggest a novel approach to explain the physics of bound photonic states embedded into the radiation continuum. We study dielectric metasurfaces composed of planar periodic arrays of Mie-resonant nanoparticles ("meta-atoms") which support both symmetry protected and accidental bound states in the continuum, and employ the multipole decomposition approach to reveal the physical mechanism of the formation of such nonradiating states in terms of multipolar modes generated by isolated meta-atoms. Based on the symmetry of the vector spherical harmonics, we identify the conditions for the existence of bound states in the continuum originating from the symmetries of both the lattice and the unit cell. Using this formalism we predict that metasurfaces with strongly suppressed spatial dispersion can support the bound states in the continuum with the wavevectors forming a line in the reciprocal space. Our results provide a new way for designing high-quality resonant photonic systems based on the physics of bound states in the continuum.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.