Background Sepsis and inflammation can cause intensive care unit-acquired weakness (ICUAW). Increased interleukin-6 (IL-6) plasma levels are a risk factor for ICUAW. IL-6 signalling involves the glycoprotein 130 (gp130) receptor and the JAK/STAT-pathway, but its role in sepsis-induced muscle wasting is uncertain. In a clinical observational study, we found that the IL-6 target gene, SOCS3, was increased in skeletal muscle of ICUAW patients indicative for JAK/STAT-pathway activation. We tested the hypothesis that the IL-6/gp130-pathway mediates ICUAW muscle atrophy. Methods We sequenced RNA (RNAseq) from tibialis anterior (TA) muscle of cecal ligation and puncture-operated (CLP) and sham-operated wildtype (WT) mice. The effects of the IL-6/gp130/JAK2/STAT3-pathway were investigated by analysing the atrophy phenotype, gene expression, and protein contents of C2C12 myotubes. Mice lacking Il6st, encoding gp130, in myocytes (cKO) and WT controls, as well as mice treated with the JAK2 inhibitor AG490 or vehicle were exposed to CLP or sham surgery for 24 or 96 h. Results Analyses of differentially expressed genes in RNAseq (≥2-log2-fold change, P < 0.01) revealed an activation of IL-6-signalling and JAK/STAT-signalling pathways in muscle of septic mice, which occurred after 24 h and lasted at least for 96 h during sepsis. IL-6 treatment of C2C12 myotubes induced STAT3 phosphorylation (three-fold, P < 0.01) and Socs3 mRNA expression (3.1-fold, P < 0.01) and caused myotube atrophy. Knockdown of Il6st diminished IL-6-induced STAT3 phosphorylation (À30.0%; P < 0.01), Socs3 mRNA expression, and myotube atrophy. JAK2 (À 29.0%; P < 0.01) or STAT3 inhibition (À38.7%; P < 0.05) decreased IL-6-induced Socs3 mRNA expression. Treatment with either inhibitor attenuated myotube atrophy in response to IL-6. CLP-operated septic mice showed an increased STAT3 phosphorylation and Socs3 mRNA expression in TA muscle, which was reduced in septic Il6st-cKO mice by 67.8% (P < 0.05) and 85.6% (P < 0.001), respectively. CLP caused a loss of TA muscle weight, which was attenuated in Il6st-cKO mice (WT: À22.3%, P < 0.001, cKO: À13.5%, P < 0.001; WT vs. cKO P < 0.001). While loss of Il6st resulted in a reduction of MuRF1 protein contents, Atrogin-1 remained unchanged between septic WT and cKO mice. mRNA expression of Trim63/MuRF1 and Fbxo32/Atrogin-1 were unaltered between CLP-treated WT and cKO mice. AG490 treatment reduced STAT3 phosphorylation (À22.2%, P < 0.05) and attenuated TA muscle atrophy in septic mice (29.6% relative reduction of muscle weight loss, P < 0.05). The reduction in muscle atrophy was accompanied by a reduction in Fbxo32/Atrogin-1-mRNA (À81.3%, P < 0.05) and Trim63/MuRF1-mRNA expression (À77.6%, P < 0.05) and protein content.
Extracellular vesicles (EVs) are produced by various cells and exist in most biological fluids. They play an important role in cell–cell signaling, immune response, and tumor metastasis, and also have theranostic potential. They deliver many functional biomolecules, including DNA, microRNAs (miRNA), messenger RNA (mRNA), long non-coding RNA (lncRNA), lipids, and proteins, thus affecting different physiological processes in target cells. Decreased immunogenicity compared to liposomes or viral vectors and the ability to cross through physiological barriers such as the blood–brain barrier make them an attractive and innovative option as diagnostic biomarkers and therapeutic carriers. Here, we highlighted two types of cells that can produce functional EVs, namely, mesenchymal stem/stromal cells (MSCs) and regulatory T cells (Tregs), discussing MSC/Treg-derived EV-based therapies for some specific diseases including acute respiratory distress syndrome (ARDS), autoimmune diseases, and cancer.
Background and Purpose All previous rodent models lacking the peptide hormone angiotensin II (Ang II) were hypotensive. A mixed background strain with global deletion of the angiotensinogen gene was backcrossed to the FVB/N background (Agt‐KO), a strain preferred for transgenic generation. Surprisingly, the resulting line turned out to be normotensive. Therefore, this study aimed to understand the unique blood pressure regulation of FVB/N mice without angiotensin peptides. Experimental Approach Acute and chronic recordings of blood pressure (BP) in freely‐moving adult mice were performed to establish baseline BP. The pressure responses to sympatholytic and sympathomimetic as well as a nitric oxide inhibitor and donor compounds were used to quantify the neurogenic tone and endothelial function. The role of the renal nerves on baseline BP maintenance was tested by renal denervation. Finally, further phenotyping was done by gene expression analysis, histology and measurement of metabolites in plasma, urine and tissues. Key Results Baseline BP in adult FVB/N Agt‐KO was unexpectedly unaltered. As compensatory mechanisms Agt‐KO presented an increased sympathetic nerve activity and reduced endothelial nitric oxide production. However, FVB/N Agt‐KO exhibited the renal morphological and physiological alterations previously found in mice lacking the production of Ang II including polyuria and hydronephrosis. The hypotensive effect of bilateral renal denervation was blunted in Agt‐KO compared to wildtype FVB/N mice. Conclusion and Implications We describe a germline Agt‐KO line that challenges all previous knowledge on BP regulation in mice with deletion of the classical RAS. This line may represent a model of drug‐resistant hypertension because it lacks hypotension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.